$3.00

(8
£
2
%
g

December 1982

eSoftwareMagaz

Volumel lll, No. 7

Ine

(ISSN 0279-2575, USPS 597-830)

g,

g st

cipatens

TIM Il

The Non-Programming Approach to Data Base Management

Data Base Management

Data management packages were created to
save time and money in the development of software
solutions to information problems. Many have been
designed to accomplish just that, although most have
only the programmer in mind. Sure they would save
time in the long run, but what of the initial investment
in time and effort required to learn the new language?
What about the non-programmers in the world who
would like an easy yet powerful applications generator?
The solution is one of the most highly acclaimed soft-
ware packages of our time, T.LM. III.

What is TI.M.?

TIM. is Total Information Manage-
ment. Programmers love it due to its original solutions
to classic data management problems. Non-
programmers adore it since they can use it to achieve the
same results as with other more complicated
programming-like packages.

What Makes T.I.M. So Simple
to Use?

We at Innovative Software, Inc. designed
T.ILM. from day one with the end user in mind. Maybe
he is a programmer who doesn’t have time to learn a
new language. Or perhaps a neophyte who fears coding
pads and lines numbered by tens. We felt that a data
management package should be able to be used by
anyone from a systems analyst to a secretary. That's why
T.LM. takes a full menu-driven approach, uses multiple
HELP screens, and has a manual that sets a new stan-
dard in documentation.

The Manual

Many people believe that the manual is
just as important as the software itself, a view that we
at Innovative Software, Inc. tend to share. The
manual for T.LM. is divided into two sections, the
Reference section and the Primer. The Reference
section describes all of T.I.LM’s commands
and subcommands. This is done in
English, not in technical terms or in
our own language. Even if you have ‘n

Available for CP/M,* and
IBM PC DOS.* *

CP/M version—*695. IBM PC version—*495.

TIM is a Trademark of Innovative Software, Inc.
*CP/M and MP/M are Trademarks of Digital Research
**Trademarks of IBM

e Softare

never seen a computer before in your life, you'll be
able to read and understand our manual immediately.
The second section is a primer which goes through
several examples for you, again in plain English.
These true-to-life examples take the beginner by the
hand, and instructs him what to do and when. You
will be able to see for yourself that T.I.Ms only limita-
tion is the imagination of the user.

Features of TI.M.

T.ILM. has all of the features one has come to
expect from a data management package, as well as
many new ones. For example, a word processing interface
that allows you to mierge information from a T.LM. file
with letters or other documents created by a word pro-
cessor. Now you can automatically send personalized let-
ters to hundreds or thousands—quickly and easily.
T.ILM!s Select command enables you to pull specific infor-
mation from a file. For example. “All customers who live
in a certain ZIP code, whose last name begins with the
letter A to L, whose balance due is less than $50.00.” A
sophisticated report generator and even a list generator are
also included.

How powerful is TL.M.? With a maximum
record size of 2400 characters and the ability to keep up
to forty fields sorted properly at all times, T.LM. is
powerful enough to handle just about any application.
T.ILM. can handle over 32,000 records per file, and two
files can be linked together for reports if your application
requires a many-to-one relationship. T.L.M. also includes
all of the same editing commands as your word pro-
cessor, thus making data entry and editing a snap. You
can also pull selected records from one file to place them
into another. Files may be restructured to add or sub-
tract fields and/or change field lengths or types. T1.M.
even has it’s own utility for backing up hard disks onto
floppies.

Where to Find T.I.M.

TLM. is available from Lifeboat
Associates. Or you may purchase from us direct
by calling 913/383-1089. Either way you will

have the finest data management
program available.

Innovative Software, Inc.

9300 W. 110th Street, Suite 380
Overland Park, Kansas 66210 USA
913/383-1089

We are dedicated to the achievement of a singular goal. . .
to market fully supported software that sets standards of excellence.
Standards against which all software will be measured.
Standards which require that we, as well as the OEM’s and authors
with whom we labor, constantly offer the state-of-the-art.

Our commitment to being Number One is too strong for
Lifeboat to market anything less.

Lifeboat Associates

The standard for fully supported software.

1651 Third Avenue, NY, NY 10028. (212) 860-0300.
TWX 710-581-2524 (LBSOFT NYK).

Lifelines/The Software Magazine, Volume III, Number 6

e
B
gl ==

i i
BT B8

The So

are Magazine

Volumellll, No. 7

December 1982

Editor-in-Chief: Edward H. Currie
Circulation/Customer Service: Patricia Matthews

Communications: Bonita E. Taylor
Data Processing: Lewis Tseng

Design/Production: K. Gartner
Typographer: Harold Black

32

7

34

The CP/M® Users Group

CPMUG™ News
Ward Christensen

Software Notes

A Simple Menu Program
Mikki D. Parkyn

Once More With Feeling
CP/M Version 3

Lawrence Fishman
Anne Odden

Cover by K. Gartner

27

Digital Dollars Department
MicroMoneymaker’s Forum

Charles E. Sherman
Features

A Review of Citation™
Paul E. Hoffman

Access Manager™:
Searching and Other Necessities

Michael Olfe Bruce H. Hunter
36 New Versions of dBASE || ™ .
Michael Olfe 13 A Review of SUPERFILE™

30
31
31

Product Status Reports
New Products

New Versions

Books

18

24

Bob Kowitt

8080 Assembler Programming
Tutorial, Debugging
Ward Christensen

RMS™, A Review
Davis A. Foulger

A PROFESSIONAL SYSTEM
AT A P.C. PRICE

$2995
TURN-KEY $S-100 SYSTEM
FEATURING:

Teletek Systemaster SBC

enclosure 2 Parallel & Serial Ports
2 8" D.D, DS. Drives CPM™ 2.2 Installed
ADDS 3A Viewpoint Terminal

Integrand 10 slot

Full Teletek line available. Multi-user & Turbodos™
options can be added. Other S-100 products,
printers, peripherals, personal computers, and
CPM™ software products available at 15-20%
above wholesale cost. Full service and repair.
Workshops and classes held regularly.

TOTAL ACCESS
SUITE 202, 2054 University Ave.
Berkeley, California 94704
415-652-3330 ext. 346

FORTH~=79

Version 2 For Z-80, CP/M (1.4 & 2.x),
& NorthStar DOS Users
The complete professional software system, that meets
ALL provisions of the FORTH—79 Standard (adopted Oct.
1980). Compare the many advanced features of FORTH—
79 with the FORTH you are now using, or plan to buy!

FEATURES OURS OTHERS
79-Standard system gives source portability. YES
Professionally written tutorial & user manual. 200 PG.
Screen editor with user-definable controls. YES
Macro-assembler with local labels. Y.ES
Virtual memory. YES

BDOS, BIOS & cunsole control functions (CP/M). YES
FORTH screen files use standard resident

file format. YES
Double-number Standard & String extensions. YES
Upper/lower case keyboard input. YES
APPLE 11/11+ version also available. YES
Affordable! $99.95
Low cost enhancement options;
Floating-point mathematics YES
Tutorial reference manual
50 functions (AM9511 compatible format)
Hi-Res turtle-graphics (NoStar Adv. only) YES

FORTH-79 V.2 $99.95
ENHANCEMENT PACKAGE FOR V.2:

Floating point $ 49.95
COMBINATION PACKAGE (Base & Floating point) $139.95

(advantage users add $49.95 for Hi-Res)
(CA. res. add 6% tax; COD & dealer inquiries welcome)

MicroMotion

12077 Wilshire Blvd. # 506

L.A., CA 90025 (213) 821-4340
Specify APPLE, CP/M or Northstar
Dealer inquiries invited.

Lifelines/The Software Magazine, Volume III, Number 6

Make life easier with...

WASH

the latest in an easy to use CP/M directory maintenance
utility that replaces a dozen older programs with its
menu driven file handling capabilities like:

e DIRECTORY DISPLAY
e FILE VIEW AND PRINT
® FILE RENAME
S EILEDELETE
e FILE COPY
e FILE AND DISK STATISTICS
e TAGGED GROUP COPY AND DELETE

WASH is fully compatible with CP/M user area
directories and is delivered with a user friendly
installation program to adapt WASH to your 24 x 80
console. WASH is available on 8" single density diskette
for $49.95 plus 6% sales tax.

Contact:

e MICRO RESOURCES

@ 2468 Hansen Ct.
A\—

Simi Valley, CA 93065

(805) 527-7922
Copyright © 1982, by Lifelines Publishing Corporation. No portion
of this publication may be reproduced without the written permis-
sion of the publisher. The single issue price is $3.00 for copies sent
to destinations in the U.S., Canada, or Mexico. The single issue
price for copies sent to all other countries is $4.30. All checks
should be made payable to Lifelines Publishing Corporation. For-
eign checks must bein U.S. dollars, drawn ona U.S. bank; checks,
money orders, VISA, and MasterCard are acceptable. All orders
must be pre-paid. Please send all correspondence to the Publisher
at the below address.

Lifelines (ISSN 0279-2575, USPS 597-830) is published monthly at
a subscription price of $24 for twelve issues, when destined for the
U.S., Canada, or Mexico, $50 when destined for any other country.
Second-class postage paid at New York, New York. POST-
MASTER, please send changes of address to Lifelines Publishing
Corporation, 1651 Third Ave., New York, N.Y. 10028.

CP/M is a trademark of Digital Research

Lifelines - TM Lifelines Publishing Corp.

The Software Magazine - TM Lifelines Publishing Corp.

SB-80, SB-86 - TMs Lifeboat Associates.

BASIC-80, MBASIC, MS, SoftCard, COBOL-80 - TMs Microsoft, Inc.
CB80, PL/I-80, SID-86, CP/M-86, Pascal MT +, MP/M, Access Manager - TMs, CP/M and CBASIC2
registered TMs - Digital Research, Inc.

Citation - TM Eagle Enterprises

dBASE Il - TM Ashton-Tate.

KIBITS - TM Bess Garber

MailMerge, WordStar - TMs MicroPro International Corp.

PMATE, PLINK-II - TMs Phoenix Software Associates, Ltd.

RMS - TM Washington Computer Services

SUPERFILE - TM FYI, INc.

Z80 - TM Zilog Corporation.

Program names are generally TMs of their authors or owners.

The CP/M Users Group is not affiliated with Digital Research, Inc.

e e e A _— T

It was inevitable.

In the beginning, there was the data base management system. Powerful, but only if you knew
programming. Then came the program generator—anyone could use it, but why bother to generate
poorty written BASIC programs? Now there’s the best of both worlds with QUICKCODE™, the

data base program generator.

Power and ease of use.

Fox & Geller's QUICKCODE™ combines power and ease of use in one neat package. It writes consise
aBASE II™ programs to set ugd and maintain any kind of database. You can run them as is or
custornize them in seconds. And you'll still have all the power of dBASE I™ at your disposal: query
language, report generator, and so on. But just as important: you don't need to do any programming. Just
draw your aata entry form on the screen and you're in business. Typical time to set up a customer

list or order file: 5 minutes.

The Wordstar connection.

QUICKCODE™ also gives you the ability to transfer your dBASE II'™ data into Wordstar®/Mailmerge™
files for word processing and form letters. So you can get the most from two Software bestsellers:
aBASE ™ and Wordstar®.

(Software dealers: DOUBLE YOUR SALES!)

That’s notdll. ..

There are lots of other features, like form and report generation up to 132 characters wide, four-up
mailing labels, three kinds of data valigation, four new data types not found in dBASE II™ itself, data base
keys, and menu generators. You really have to see it to believe it.

It’s your move.

Now it's up to you to take advantage of this latest development in software. Why waste any more time
writing programs or paying someone to write them for you?

Fox & Geller's QUICKCODE™: $295.00.
QUICKCODE is now available for the IBM -PC with the Xedex Baby Blue Card.

G

Fox & Geller, Inc.
PO. Box 1053
Teaneck, NJ 07666
201-837-0142

QUICKCODE is a trademark of Fox & Geller, Inc.

aBASE Il is a trademark of Ashton-Tate.

WORDSTAR is a registered trademark of MicroPro International,
San Rafael, California USA.

MAILMERGE s a tracemark of MicroPro Interational,

San Rafael, California USA.

IBM is a registered trademark of International Business Machines.

Lifelines/The Software Magazine, December 1982

Feature

A Review of Citation

Citation, version 2.0
Eagle Enterprises

2375 Bush Street

San Francisco, CA 94115
415-346-1249

Citation is an excellent utility for keep-
ing track of articles, books, and adver-
tisements. A pre-packaged database
application, Citation is designed for
anyone who needs to catalog informa-
tion from many different sources. Al-
though the concept behind it sounds
simplistic, this is one of the best de-
signed products of its kind that I have
seen.

Many Lifelines readers are computer
professionals who read at least three
computer magazines a month. Most of
us at some point have said to ourselves,
“Gee, I should start cataloging all the
articles that I read, in case I need to find
one in the future.” We often feel this
way when we need to find an article
and spend the better part of an hour
searching through stacks of back
issues. (Editor’s Note: Of course an in-
dex is available for Lifelines/ The Soft-
ware Magazine.)

If Citation only catalogued, it would
not be a very interesting program.
Most people have data base manage-
ment systems that could create an ap-
plication for storing article listings,
possibly with a keyword for each. But
Citation also stores book references
and name-and-address references, and
gives you five words to index for each
entry. Extremely easy to use, it supplies
you with most of the features you
would have built in yourself if you had
the time and programming knowledge.

Uses for Citation

Once you have Citation up and run-
ning (the installation is exceedingly
easy), you will find yourself indexing
more than you expected to. For exam-
ple, I thought that I would only use it
for indexing a few articles from BYTE
and Dr. Dobbs, but I ended up using
Citation on all the other computer

magazines I get as well. This happened
when I realized that it takes only about
five minutes per issue to index all the
articles of possible interest - and the
time I invested was quite little, com-
pared to the tedium of digging through
the magazines.

You will probably find yourselt index-
ing more articles in a particular issue
than you expected, even some you did
not bother to read. (They may be need-
ed in the future!) Since diskette space is
inexpensive, it makes sense to include
almost everything in sight before you
put the magazine on the shelf, rather
than deciding later that you want to
look for articles on a subject you didn’t
index.

I also started using Citation to keep
track of the ads in BYTE, so that [will
be able to find new products and their
manufacturers when I need them later.
Citation’s name-and-address feature is
perfect for this, since these records are
stored in the same files as the data on
articles. Thus, when I look at all the
citations for “hard disks,” I can find the
advertisements as well as the articles.
Also, I keep a running list of the re-
views in Lifelines and InfoWorld.

You can, of course, use Citation for
other types of indexing. For instance,
students writing dissertations and
theses which involve many references
will find Citation useful for collecting
information and determining the use-
fulness of individual sources. It is cer-
tainly handy when a lengthy bibliog-
raphy is required, although you will
have to transcribe the information
from Citation’s output to proper bib-
liography format.

Citation is quite useful in cataloging
public-domain software diskettes. Al-
though most CPMUG and SIG/M
diskettes have catalogs on them, you
may want to keep track of programs of
interest to you with Citation - in case
you ever become interested in a partic-
ular class of programs (i.e., BDS C util-
ities, games, etc.) Since you have up to

Lifelines/The Software Magazine, Volume III, Number 7

Paul E. Hoffman
five keys to index each program or
diskette, you can save the type of pro-
gram, the language (in case you ever
buy the compiler, you'll know what is
currently available), oreven the author.

There are many other applications for
which Citation is well suited, limited
only by your imagination. This review
will discuss Citation as a computer
literature indexing system, since I think
that is what most Lifelines readers will
use it for.

Citation’s Features

The most important considerations in
judging a non-configurable application
product with a specialized purpose are:
- whether you can do nearly every-
thing that you want to do,

- and whether you can operate the
system easily, so that you never
hesitate to run it.

Citation has both of these features.

The features most important for an ar-
ticle indexing program are the ability to
add and change records easily and
great flexibility in searching for infor-
mation. Citation covers the first fea-
ture by careful handholding through-
out the program (without the conde-
scending posture of some other turnkey
programs). A display at the bottom of
the screen is always present, telling you
what you are doing. With five keys of
twenty characters each, you will have
no problems later on finding the record
that you want.

Each citation record has the following
fields:

Keywords 5 entries, 20 characters each

Source 25 characters
Date in mm/dd/yy format
Page 4 digits

Summary 70 characters
Comments 9 lines of 70 characters

The source is the name of the magazine
or periodical you are citing. The sum-

(continued next page)
S

mary is typed out in a keyword index
report, but you can also use it simply as
the first line of a ten line comment.
There is plenty of space to record im-
portant future information about the
article.

The publication record (for books or
pampbhlets) is the same as the citation
record, except that you have a 20 char-
acter author field instead of a page
field. The name-and-address screen has
the same keywords, summary and
comments fields, but also name, two
address lines, city, state zip, and phone
number. All three types of records are
kept in the same data file. You can flip
through a magazine page by page, add-
ing articles or advertisements without
changing data sets.

Citation is fully driven by menus, and a
novice computer user should have ab-
solutely no problem using it. All menus
are clear and concise, and all have very
good error handling and error mes-
sages. There is little that you can do
wrong, and the escape key is used as a
consistent way of getting out of the
program at almost all levels.

Like most application programs, Cita-
tion uses (and expects) cursor address-
ing for all its functions. The program
checks each character you type, and
gives you many advanced editing fea-
tures, such as automatic word wrap
when entering in the comments field.
The terminal installation program is
easy to use, even for non-standard ter-
minals.

The record retrieval and update menus
are also simple. You can print or view
records based on a ten-key search.
Citation even sorts the records it finds,
and shows you the ones with the most
matches first. Thus, if you are looking
for an article on the Hayes modem, and
you can’t remember if you gave
“Hayes" as a keyword, search for both
“modem” and “Hayes.” If you did use
the keyword, that record comes up
first; if not, it is still in the selected
group.

During the keyword search, you can
view the records on the screen, print
them on your printer, and write them to
a file simultaneously. You can even
select which ones to print or write to a
new file from the group of records you
are reviewing.

Citation also lets you print out the
keyword file, so that you can clean up
some of the keywords after you have
been using the system for awhile
(change “modem” to “modems”, etc.).
You can print out the whole file, sorted
by source, date, and page number.

Special Features

Most of the above features could be
programmed with a reasonably good
data base management system, given
enough time, but it is unlikely that
anyone would want to go to so much
trouble for this type of application. The
people at Eagle Enterprises added a few
extra features which I think are extra-
ordinary, and other software firms
should take a lesson from Eagle.

The biggest problem with database ap-
plications where the keys are kept
separate from the data is what happens
to the user when the key file becomes
corrupted. Generally, the words “go to
your most recent backup” come to
mind, but Citation lets you rebuild the
keys with little effort.

I am especially attracted to the concept
of keeping all the records in one data
file. When you search for a set of key
words,you probably don't care whether
the records you find are for a book, or
an article, or an advertisement. I might
hesitate to repeat a search process three
times to find all the information on a
particular subject, and Citation makes
the repetition unnecessary. (Of course,
the utility of Citation’s storage method
depends on the application you are us-
ing it for.)

Another wonderful feature of Citation
is the manual. It is clear, direct, helpful,
creative, and easy to follow. There is a

table of contents, index, and many pic- #
tures of the screen. The description of §
each command tells you which files are §

used by the defined command, what

the screen will look like, and how to §

recover from errors.

The manual constantly reminds you of
the importance of backing up your data
diskettes, but Eagle doesn't stop there.
Each time you exit Citation, it tells you
which files you have updated, so that
you know exactly what you need (and,
more importantly, don’t need) to back
up. This is a particularly thoughtful

feature which can save the user much

time.

Conclusions

As you might guess, I highly recom-
mend this package to anyone who
wants to keep track of everything they
read, or to anyone who needs orga-
nized references to literature. I can't,
however, recommend it without a ma-
jor reservation: the price.

Without going into a protracted ha-
rangue about the price of software
these days, I think it is safe to say that
$250 is steep for most users. If the price
were $100, Eagle Enterprises would
wear their fingers off copying and ship-
ping diskettes. At $250, however,
many people will have to reject the
package, which is unfortunate consid-
ering its quality.

However, I doubt if anyone who feels
that their time is worth more than $7.50
an hour could replicate the well-spent
effort that went into Citation and come
out ahead in dollars. You must decide
whether it is worth $250 for the ability
to almost effortlessly catalog all the ar-
ticles you read, and be able to easily
find them later.

Personally, I must keep up with every-
thing happening in the microcomputer
field for professional reasons, so I feel
that the $250 is worth it; anyone else
who catalogs (or should be cataloging)
the information they depend upon will
probably agree. If you have doubts, get
a demonstration at your local software
store.

Citation is one of the best turnkey ap-
plications I have seen in a long time. It
does everything you expect, it does it
with a minimum of effort, and it
doesn’t let you make fatal errors. If you
should be keeping better track of arti-
cles, ads and books that you read or
browse, it is an excellent package.

Lifelines/The Software Magazine, December 1982

The values of the equates MEMSIZ, SYSBAS, CLSCR and

Product Information others may need modification to suit your system.
Package: The programs in the sample are essentially for example pur-
Citation, version 2.0 poses, since they do not all return via a jump to location 0.
Those which do not will obviously not reload the menu
Price: program.
$250.00
s khkkhhkkhkhkhhkhkhhhkhkhkhkhkhhhhhhhkhhkhhkhkhkk
Systems Available For: i *
o bl *
CP/M systems (8080, 8085, or Z80) with 50K of 2e gEgU gggﬁﬁn FOR/CP/M :
available memory, dual floppy drives, and a 24x80 3% 6 PORTLAND RD., *
terminal with addressable cursor. i RONDEBOSCH 7700 =
3% CAPE TOWN, *
. A b R.S.A. *
Required Supporting Software: 3% COPYRIGHT (C) N.D.PARKYN *
None 3 kkkkkkhkhhkhkhhkhhkhkhhkhhkhhhhkhhkkhkhkhhkhkkk
3% %
e i 3 s * *
Utility Programs Provided: . = ;% NO COMMERCIAL OR MONEY MAKING VENTURES MAY BE *
Crash recovery programs, terminal definition ; * ENTERED. INTO WITH REGARD TO THIS SOFTWARE (IN *
;% ITS PRESENT FORM OR MODIFIED). *
; oy ;% IT IS INTENDED FOR PERSONAL USE ONLY AND ALL *
User Skill Level Required: ;* COPIES MUST INCLUDE THIS NOTE. THE AUTHOR"S NAME *
Small amount of computer use, although no data ;% AND COPYRIGHT AS LISTED ABOVE.THE AUTHOR RETAINS *
base experience is necessary. ;% THE RIGHT TO USE THIS PROGRAM FOR ANY PURPOSE *
;% HE MAY DESIRE (COMMERCIAL OR OTHERWISE). *
.k *
3 b
MEMSIZ EQU 56 ;CP/M MEMORY SIZE
SYSBAS EQU 0 ;SYSTEM BASE ADDRESS
ccp22 EQU 3400H ;OFFSET ABOVE CCP BASE, 20K V. 2.2
NULL EQU OOH ;NULL CHARACTER
CLRSCR EQU 1AH ;CLEAR SCRN TERMINAL DEPENDENT
P BS EQU O8H ;BACKSPACE CHARACTER
Iro Trainl « EQU ODH ;CARRIAGE RETURN
s LF EQU OAH ;LINE FEED
Nikki D. Parkyn gy EQU OlH ;CONSOLE INPUT FUNCTION
i (FNX9 EQU O09H ;PRINT STRING FUNCTION
Menu driven systems allow an operating environment to be- Fxx14 EQU OEH ;SELECT DISK FUNCTION
come more user friendly. User friendly systems are often es- DRIVA ~ EQU OOH sSELEGECNRTNE-A
(i : ; BDOS EQU OSH ;CP/M VECTOR TO BDOS
sential in commercial environments, where operators should
not be troubled by the intricate command strings required by~ ccpeas EQu SYSBAS+CCP22 ;BASE OF CP/M 2.2 (20K)
most operating systems. BIAS EQU (MEMSIZ-20)*1024;OFFSET FOR SYSTEM
alily _— : CONBUF ~ EQU CCPBAS+BIAS+O7H ;START OF CONSOLE BUFFER
Certa‘m high leve! languages support facilities which allow Tpapas Equ syseas+100H iBASE OF TPA
easy implementation of menu structures, like the overlay fa- CMDPTR ~ EQU CCPBAS+BIAS+136 ;COMMAND POINTER
cilities of Digital Research’s PL/1-80. However, in this type of ~ TRFADDR EQU CCPBAS+BIAS ;CCP BASE SYSTEM ADDRESS
menu implementation, all programs must be written in the ’ ORG TPABAS ;PROGRAM LOAD ADDRESS
same language; therefore, existing utilities and programs for PAGE 0 ;DISABLE PAGE COUNT (MAC)
which onl - i i i START: MVI C,FNX1l4 ;DISK SELECT FUNCTION
e dy the .COM files are available cannot readily be S5 mobivi YeELECT DRIVE A
HREIE CALL BDOS ;INVOKE IT
LXI D,MENUSCR ;DISPLAY MENU
The program I have developed allows .COM files to be exe- MVI C,FNX9 ;l;gégTKEngG FUNCTION
. : CALL BDOS ;
cuted from a menu. Thg ass.er_nbler s loc.at.lon counter allqws MVI C,ENXI ' CONSOLE INPUT FUNCTION
the tables to be self-maintaining, permitting easier insertion CALL BDOS ;INVOKE IT
of programs into the menu. The menu program should be im- CPL™ g TEST IF NUMERIC
plemented so that it is autoloaded at warm boot, employing ‘Clgl i e B, e
the method that has been described in numerous articles and JNC START ;NO RE-DISPLAY MENU
books. (See Lifelines/ The Software Magazine, Volume III, SUL “0° ;CONVERT TO BINARY
No. 1, page 17.) This allows control to be passed to the menu UL WAROPT] PRI & N
b d G o : JNC START ;NO RE-DISPLAY MENU
at warm! OC.)t and at ter:mm'atlon of user program execution. DCR A ;FORM TABLE OFFSET
When a valid menu option is selected, the CCP and control is CMP A ;CLEAR CARRY
passed to it, invoking execution. The program will currently RAL jHCLELEE ot <
: : ; : LXI H,PGMTABL ;GET TABLE BAS
allow a maximum of nine menu options, but could easily be :
e ’ MOV E,A ;OFFSET INTO E
modified to handle more. MOV D,00H ;CLEAR D
DAD D ;ADD OFFSET
Programs can be inserted by adding them to the menu screen ‘I‘g;’(o fgﬁﬁpl‘g‘gﬁgk
display, execute §tring table and execute string start address MOV D,M SGET HIBYTE
table, as shown in the sample program. XCHG ;TRANSFER TO HL
(continued on page 26)

Lifelines/The Software Magazine, Volume III, Number 7 7

Feature Access Manager:

Searching And Other Necessities

Last month we took our first look at
Digital’s new data storage and retrieval
system, Access Manager, concentrat-
ing on the data and index file creation
routines and updating the files. While
the article was being printed I have
looked at the rest of AM-80, and found
it impressive. The search routines and
functions are well thought out, and
they function far better than I had an-
ticipated. It seems to have been Digital
Research’s intention to make Access
Manager as powerful as they could,
while at the same time as easy to imple-
ment as possible. As far as I am con-
cerned, they have succeeded.

Access Manager is intended to handle
small to medium-large data bases. In a
single user system, it can open twenty
data files of eight megabytes each,
simultaneously, and at the same time it
will hold open ten index files. In an
MP/M environment, it can tolerate forty
data files of 32 megabytes each with
forty open index files. AM-80's ability
to access the data base at lightning
speed is nothing short of phenomenal
and was the subject of the last article.

To demonstrate the flexibility of AM-80,
it was my intention to write a “nice lit-
tle program” for this series, just a little
larger than the trivial program of the
last article used to bring up the files and
add to them. I soon discovered that to
even partially demonstrate AM-80's
power and flexibility, it was necessary
to write over six hundred lines of skele-
tal code. So this code, and the explana-
tions for it will appear next month.

Before getting into the program, let’s
take a look at the search routines. Ac-
cess Manager provides a wealth of
search related routines. They can
search for key values whether the keys
are exact or approximate values and
are able to start at the beginning or end
of the index file; they can start at either
a particular key (target key) or the key
presently indexed, and can move either
forward or backward through the in-
dex file.

8

Search Routine Parameters

All search routines require that a num-
ber of arguments be passed to them. To
be consistent with Digital’s manual, I
will use their nomenclature to define
these arguments:

KEY an integer value assigned to
the key or index file being
referenced

DLOCK an integer value indicating
the lock or unlock operation
requested

FILE an integer value assigned to

the data file being referenced
DRN an integer value indicating
the data record number

IDXVAL a string value, used as an
output parameter to return
the key value found by the
appropriate search routine
(see the note on IDXVAL)

KEYVAL a string value representing
the key value to be searched
by the routine in the index
file

Most of the above parameters are
either self-descriptive or have been
discussed before, but IDXVAL and
KEYVAL require a bit more explana-
tion. Keys may be either string (alpha)
or integer (numeric) by definition. The
parameter KEYTYP defined which was
to be used. Its length was defined by
KEYLEN. All key values are passed to
AM-80 as strings. If numeric (integer,
single precision, etc.) values are used
internally within the program, they
will have to be converted to string
values before being passed as param-
eters to AM-80.

Numeric key values in AM-80 are ex-
pected to be passed to the routines that
call them as ASCII string representa-
tions of Intel hexadecimal code. OK, I
didn't get it at first either. The program-
mer must first convert the number to be
input into hexadecimal. Next he must
turn the byte order around to put the

Bruce H. Hunter

least significant byte first, most signifi-
cant byte last, and next most significant
byte next-to-last, and so on. This odd
anachronism keeps the bytes in stack
order. Now the programmer must con-
vert this into characters, using the or-
der described. For example, 1025 (deci-
mal) becomes 0401H. This is in turn re-
versed into 0104 and stored as “0104".

Why? At first it seems like an awful lot
of work, and reconversion must fol-
low. However, numeric values stored
this way require substantially less
space than if they had been stored in
ASCII. The 1025 example above would
be stored as “31303235” in ASCII, tak-
ing four bytes. In hex, numbers less
than 256 are stored in a single byte. A
number like 65535 will take only two
bytes, on so on. The larger the key, the
greater the storage savings, if the
number of records are great enough.
You can either enter all your numeric
keys as alpha, by setting key type to 0,
or be prepared to do the programmatic
housekeeping of converting number
keys input to Intel hex format. (And, as
already noted, keys entered as Intel hex
will have to be reconverted on output
to human readable ASCII form.)

On the other hand, if the key file is not
all that large, you may well ask if this
labor is worthwhile. If the numeric key
were simply converted to character, by
CHRS9, or a similar function, and
stored as a ASCII string, it would be
stored in ascending “sorted” order as
alpha characters are. Additionally, du-
plicate key values can be assigned (but
not to straight numerics). Should a
numeric key be passed to the key file as
a straightforward number string, the
system will store it in ASCII, trusting
that you did your homework. How-
ever, when you go to retrieve it with,
say a FRSKEY followed by a NXTKEY
in a loop to return it in order, it all goes
down the tubes. The reason is that it
has returned what it thought to be hex
ascending order, sorted as last byte,
first byte. g

Numeric key values are tricky, and if
you are having trouble understanding
them, join the club. I had trouble, too.
The concepts are difficult to under-

Lifelines/ The Software Magazine, December 1982

stand and the manual wasn’t par-
ticularly clear in explaining numeric
key values. I hope this explanation
helped, because you must learn these
principles in order to use Access Man-
ager effectively.

Notes On IDXVAL And
KEYVAL

The parameter KEYVAL passed to
most index file routines is simply the
key value targeted by the program or
program input. In other words, it is
either an exact image or a close repre-
sentation of the key being searched for.

The parameter IDXVAL, on the other
hand, is supposed to be the actual value
returned by the search of the index file.
Your reaction may be, “How is it going
to be the value returned by the routine
when it is an input argument?”

In fact, the index value is always a
string value (as mentioned in the sec-
tion on key values) with a constant ad-
dress and length. IDXVAL seems to be
a buffer for the index value. In pro-
gramming languages like BASIC (or
CB-80), which do not declare their
variables, buffer storage must be
“created” by assigning a string of
blanks (020h) of sufficient length to
hold the actual key value. I presume
that in PL/I, declaring IDXVAL to be of
fixed length and to be static would ac-
complish the purpose, but setting an in-
itial value of blanks to the KEYLENgth
can’t hurt. When IDXVAL is returned,
if its KEYLEN is longer than its actual
length, it will be padded to the right of
the string value with blanks.

The Search Routines
Themselves

The routines discussed here are used in
the chart of accounts program which
will be presented next month. The
functions will be covered before getting
into the program discussion.

GETKEY is straightforward, going
right for the key. In KEYVAL, the
target key is passed to the routine along
with the key and data file numbers and
the lock request. The “Catch 22" of this
function is that the match must be ex-
act, and nothing less. In the program
listing GETKEY is used to find an exact
match of the account number, a prac-

tical use for the function since the ac-
count number is exact, and an exact
match is not an unreasonable request.

SERKEY is a bit more devious than
GETKEY. It looks for the first key (in
key sequeniial order) which is the same
as or greater than KEYVAL, the target
key value. This function takes all the
same parameters as GETKEY with the
addition of IDXVAL, the output value
found in the buffer. Searching for inex-
act values such as account names, or
any sort of name for that matter, is an
ideal application of this function. We
can never hope to find a name stored
exactly as we would hope to find it. If
we are looking for “Ashton Tate” and
the index is stored as “Ashton-Tate”,
GETKEY will return a zero indicating
no such key. Since the dash “-” is an
ASCII 058h and greater than the blank
ASCII 020H, SERKEY would indeed
return the name.

I hate to keep dwelling on the idiosyn-
crasies of IDXVAL (the index value
output argument), but it can utterly
confuse the program if not understood.
We pass IDXVAL to the appropriate
routines as a string of blanks of the
length expected of the key by KEYLEN.
If no equal or greater value can be
found, the function will return a zero
and IDXVAL will be returned as a
string of blanks as it was passed. If the
value is found, it is returned in IDX-
VAL, and if IDXVAL is longer than
KEYVAL, the target value, it is padded
to the right with blanks. This situation
illustrates the need for a software tool
to remove the trailing blanks (thank
you Kernighan and Plauger).

FRSKEY takes as parameters the data
and key file numbers, the lock condi-
tion, and our old friend IDXVAL. It
returns the data record number of the
first value in the index file.

LASKEY takes the same parameters as
FRSKEY and returns the last key value
in the specified index file. Since the in-
dex files are in key sequential order, the
utility of the last two functions takes on
new importance. Starting at the first or
last key and reading the keys to the op-
posite extremity will give, in essence,
an ascending or descending sort, re-
spectively. Slick, really slick.

Now that we have found how to get to
an exact value, how to get to an inexact
value, and how to get to the first and
last keys, all we need to make the func-

Lifelines/The Software Magazine, Volume III, Number 7

tions complete is the ability to go for-
ward or backward through the index.
The only problem is whether to move
relative to the present position in the in-
dex or to the value of the target index.
AM-80 doesn't let us down, as the next
four routines show us.

NXTKEY returns the data record num-
ber of the next key relative to the pres-
ent file pointer position. It and PRV-
KEY take as parameters the data and
key file numbers, lock request and the
output parameter IDXVAL. It returns
the data record of the next key, or,
rather than dying trying, gives a zero if
there is none.

PRVKEY returns the key previous to
the present to the index file position.

AFTKEY fills the void, giving us the the
key following the target key KEYVAL.
KEYVAL is the only other parameter
needed that NXTKEY did not have,
since NXTKEY didn’t require a target
key.

BEFKEY searches in the other direction
looking for the key which is less than
the target key KEYVAL, taking the
same parameters as AFTKEY.

There are the search functions, in a nut-
shell. Contemplating the power of
these routines to jump about the data
base and retrieve virtually anything (as
long as it is in an index), the word
“awesome” springs to mind. We in the
micro world are used to living with
restrictions, so when something like
this comes along, the feeling of power is
great!

A Brief Aside

I was having coffee a few days ago with
Bill Hogan, my good friend and micro
systems analyst. Bill has a great deal of
expertise on data base systems and is a
dBASE “guru.” We kicked around rela-
tional vs. hierarchical data bases for a
while and compared dBASE's B+ tree
organization and AM-80’s, (both hier-
archical).

The discussions distilled down to the
fact that whether the relational or hier-
archical nature of a data base system
should be of little importance to the
user. The efficiency of the system'’s
housekeeping and the speed with which
it searches are the ultimate factors in

the worth of a data base system. Here
(continued next page)

AM-80 has it all. If AM-80is taking any
time to “thrash” it is not apparent on
my system. CompuPro’s DMA disk
controller and a pair or DT-8's don't
hurt, but there can be little doubt:
AM-80 is efficient.

Just to sidetrack for a bit, we've been
talking about B-trees as if they were the
only search procedure in the world.
Let'slook at the options. We know if we
have a file in sorted order, a relatively
simple search (like a binary one) will
recover data in a reasonable amount of
time, provided the file is not too large.
Sounds good, but there are a few prob-
lems. The data file must be in high
speed memory, it must be in an array,
and of course it must be sorted. There
are efficient sorts, including “canned”
sorts such as SuperSort.

The problem is that the program user
must always sort the data base before
searching it. Perhaps the fastest search
is the hash search. Hashing provides an
algorithm that will produce a semi-
unique value for any key hashed. Any
subsequent hashing of a target key will
locate on or near the similar key. Prob-
lems? The area allocated for the hash
table must be large enough to provide
for thrashing, but not so large that
memory is wasted. The table area must
be allocated statically, a procedure
which lacks flexibility. Theory aside, it
appears as if there is no substitute for
the speed and efficiency of the B-tree
system.

File Recovery Routines

I was going to examine search routines
only, but as the program got longer, it
became necessary to check out the file
recovery routines. While it is impossi-
ble to guarantee that a file will never be
compromised (a nice term for blown),
- the file recovery functions are guaran-
teed to repair it. If a file has been “cor-
rupted”, you are faced with the unde-
niable fact that the program cannot
open the file(s). To get the program
back on its feet, you need an error re-
covery algorithm. The internal func-
tion ERRCOD() will return an error
code of 70. Use this to trigger the func-
tions OPRDAT and OPRIDX to recon-
struct the file(s), and they will be
reconstructed in the condition they
were in before they were operated upon
by the last iteration of the program.
Can you imagine having a meg or so of
file open without it? Let us look at these

10

functions a little more closely.

OPRDAT

A data file loses its integrity by being
opened and not being closed by
CLSDAT or SAVDAT, the file closing
or file saving functions. To rebuild the
data files, OPRDAT reconstructs the
file directory to agree with its contents.
The parameters to be passed to the
function are the data file number, lock
request, filename, and the length of the
record, the same as for OPNDAT. The
programmer’s guide is not clear on
what is returned, but if you read be-
tween the lines, the function will return
the data file number. In actual practice,
the function works as fast as the open
routine, and to bulletproof your pro-
grams, I would recommend that the
program jump to a file rebuilding sub-
routine or procedure on encountering a
“corrupted file” error.

OPRIDX

This routine does for the index file what
OPRDAT did for the data file: it re-
stores the index file once it has been
compromised. It takes the same param-
eters as its counterpart OPNIDX, the
keyfile number, the keyfile name, the
key length, the key type, and the
duplicate key switch. It returns the in-
dex file number.

Deletions

I came to the point where the sample
program could update and search
every way to Sunday. It seemed like a
good time to make it perform deletions
as well. This seemingly simple task
turned out a bit more difficult than it
might have been. Deleting a data rec-
ord is accomplished by a function that
marks the file for deletion and puts the
data file number on a stack for use by
the next update. Another function
simply deletes the index file. This is
simple in theory but in fact a bit more
difficult. Let’s look at the functions.

RETREC

RETREC does an effective deletion of
the file record by marking the record’s
first byte as “FF”. It then places the data
record number on the top of the stack
of deleted records to be used by the next
record number request. It takes as pa-
rameters the data file number, record
lock request and data record number. It
is straightforward in a single user en-
vironment, since no locks are used. It

must have a 0 or no lock request, but
again, in a single user system, why not?

DELKEY .

This function will delete the index key
specified by the data record number.
The parameters expected by the func-
tion are their index file number, data
file number, lock request, the key value
KEYVAL and the data record number.
It returns an update code indicating a
successful deletion, a not found, a lock
conflict, or an indication of conflict
between the data record number and
the KEYVAL.

Deleting a numeric key is simple,
whether passed as a string or on reverse
order. The numeric value is absolute, in
a sense, and a direct match is easily ac-
complished. On the other hand, a
string key, like a name, presents a bit of
a problem. Since KEYVAL must be an
exact match, care must be taken to du-
plicate the key from the key source, the
record field it was taken from. If it is
shorter than the key length, it must be
properly padded and justified. Key val-
ues are padded to the right with blanks
(ASCII 020h). If duplicate keys were
used, then the value is truncated by two
bytes.

Statistical Functions

After adding to and deleting from the
data base, it would be nice to find out
just where we are. A number of func-
tions are available in AM-80 to allow
the return of statistical data. The
statistics functions are more than a
nicety, they keep track of the size of the
data base and can easily be modified to
yield remaining disk space. The func-
tions that deal with the index files take
only the index file number as a param-
eter.

NOKEYS returns the number of keys
that in are in the key file.

NMNODS returns the number of index
file records or nodes.

Going back to the discussion on nodes
last month, remember that each record
or node in the index file points to a
group of data file records. The length of
the index files was established back
when the files were set up under SETUP
as four 128 byte sectors (or 512 bytes).
The length of the individual keys was

Lifelines/The Software Magazine, December 1982

set by KEYLEN. Each key as filed takes
its key length plus four bytes. The
number of keys in a node can be
calculated as the byte length of the in-
dex file record length less 10, all divided
by the key length plus four or

integer(((number—of—sectors *
128) -10) / (key—length + 4)).

(Should appear on one line) In the case
of the numeric keys used in the
demonstration program to be listed
next month, the number of nodes per
record is

(512-10) / (4 + 4) = 62.

You can see the source of the B+tree’s
efficiency when you recognize that 62
keys are accessed at each node, as op-
posed to two in an ordinary binary tree
search.

GETDFS

For statistics on data files, GETDFS
takes the file number as the passed pa-
rameter and returns the actual size of
the data file in records, including the
128 byte header record used for house-
keeping by the system. Don't forget to
subtract the header record from the
total to find the actual number of rec-
ords used for information. If records
have been deleted from the data file,
GETDEFS will include the deleted rec-
ords in the record count. To avoid this
frustration an alternate function called
GETDFU can be used.

GETDFU

GETDFU returns the number of files in
actual use, plus, of course, the ever
present header record. Now that we
have discussed some of the functions,
let’s look at the file internals.

File Internals

For the last few years (on my own sys-
tems) I've made a habit of doing a hex
dump on new file systems, just to “see
what was inside.” AM-80 was no ex-
ception. It quickly succumbed and
dumped chartdb.dat. The dump was
not entirely a surprise. The data
showed up pretty much as expected in
ASCII representation, preceded by a
byte or two of intelligence, presumably
marker bytes, as in PL/I direct (ran-
dom) files or Apparat’s fixed marked
files.

Dumping the key files was quite an-

other story. The dumps were longer
than the data file and well padded with
Oh’s, presumably to make room for ad-
ditional housekeeping. The numeric
and alpha dumps were similar but not
identical for the first 200 hex bytes. Ap-
parently AM-80 uses this area for its in-
ternal housekeeping. Below this area
came a marker byte to keep track of the
number of records, a handful of hex
zeros and the data record number fol-
lowed by the key in ASCII. The keys
were stored in ASCII ascending order
and the data record numbers in “as
entered” order. A pair of hex zeros lay
between each data record number and
its key, which must allow the high
order two bytes used by SETDAT and
DATVAL to keep track of record
numbers over 65,535.

Numeric keys stored as numeric keys
were in most/least significant order as
they had been passed by the function
created by the programmer for that
purpose. AM-80 had stored the keys in
sort order by entering them sorted ac-
cording to most significant byte/least
significant byte. Like alpha keys, they
were preceded by the data record num-
ber.

Parting Comments

Next month we'll put these functions to
work in the chart of accounts program I
have written for demonstration pur-
poses.

DRI ALE.
et

Lifelines/The Software Magazine, Volume III, Number 7

A language for cr

STOK PILOT can make your final
product more saleable and keep it sold.

This unique langauge allows straight-
forward creation of a friendly interface
between novice users and CP/M for
any program application. Using STOK
PILOT, a software designer can easily
produce a hand-holding menu-driven
front-end supervisor with built in tutorials
to help guide the novice end-user through
a complex application. The actual end-
user does not have to know STOK PILOT.

STOK PILOT opens the door for
companies to evolve structured ap-
proaches to meeting their own training
needs.

STOK PILOT can simulate any
application program for the purpose of
tutoring the user. This allows training and
guidance without the necessity of working
on and possibly damaging live data. Then,
when the user is ready, STOK PILOT can
call the actual application program.

STOK PILOT is a superset of the PILOT
CAl language. STOK PILOT was designed
with the syntax and structure of PILOT
because PILOT is an easy to use and easy
to learn language.

STOK PILOT can be thought of as an
interactive SUBMIT facility. One program
written in STOK PILOT can control an
entire session without ever entering
cumbersome CP/M commands. The
commands can be dynamically formed at
run time by STOK PILOT.

Menus can be created that will allow the
user to select various programs. STOK
PILOT can chain to any program or utility
written in any language, leaving the entire
TPA available, and regain control when the
other program ends.

STOK PILOT can check for the existence
of a file before it actually calls the application
that needs it. Let STOK PILOT see to it that
the proper disks have been inserted by the
user.

The package includes a well written and
indexed 75 page manual. All the instruc-
tions are explained in full detail. Many
useful programming examples are also
included.

Complete 8 inch CP/M format disk and
manual retails for $129.95. The manual is
available alone for $14.95 and is deductible
from a future order. NY residents please add
sales tax.

Toll free order line: (800) 431-1953 ext 183
In NY (800) 942-1935 ext 183

C.0.D. - Mastercard - Visa

@® Stok Software Inc.

17 West 17th Street
New York, NY 10011
(212) 243-1444

Dealer inquiries invited
CP/M 1s TM of Digital Research

S T TR O e A A, | |

12

THOUSANDS OF
GP/M SOFTWARE
PACKAGES ARE

CI¥YM'82.

Sponsored by

DIGITAL RESEARCH

The Creators of CP/M

GATHERING IN
SAN FRANGISGO

Moscone Center, San Francisco
Friday-Sunday, January 21-23, 1983

CP/M '83 is an International Exposition and Conference for
the CP/M industry and CP/M users. The exposition portion
of the event will be the largest presentation of CP/M based
hardware and software ever assembled. Nearly three hun-
dred companies using over six hundred exhibit displays, will
showcase the full spectrum of application packages, devel-
opment aids, peripherals, accessories, publications and
services for CP/M based computers . . . making CP/M '83
the largest first year computer event ever.

CP/M '83’s Conference and Seminar program will include
noted leaders from the industry including Gary Kildall, Pres-
ident, Digital Research Inc.; Sol Libes, Editor, Micro Sys-
tems Magazine; Christopher Morgan, Editor-in-Chief, Byte
and Popular Computing Magazines; Adam Osborne, Presi-
dent, Osborne Computer Corporation; Tony Gold, Founder
CP/M Users Group and Lifeboat Associates; Ben Rosen,
President, Rosen Research; Portia Isaacson, President,
Future Computing; Maggie Cannon, Editor in Chief, Info-
World; David Crockett, Senior Vice-President, Dataquest;
and Gordon Eubanks, Vice-President Language Div., Digital
Research. CP/M '83’s conference, seminar and workshop
program is designed for computer tradespeople and users.
The individuals listed above, plus dozens of others, will
conduct informative discussions exploring CP/M applica-
tions, technical information, development aids, venture
capital programs and software distribution. End user
workshops will show users how to get the most from their
CP/M computer.

CP/M '83 is sponsored by Digital Research Inc., the Crea-
tors of CP/M. Over 650 different companies support CP/M
and more than 5,000 companies produce CP/M application
packages . . . All of these firms will be represented at CP/M
‘83 . . . so attendees will see and try out application pack-
ages for every profession, plus state-of-the-art programs
for word processing, telecommunications, graphics and
data base management. Also on display or as workshop
subjects are development aids to help you program faster,
plus hundreds of CP/M compatible products appropriate for
your applications.

At CP/M '83 you can explore the entire world of CP/M under
one roof and learn more in three days than you could in six
months, any other way . . . and everything which is on
display is for sale.

Registration is $10 for one-day exhibits-only ticket, or $20
for a three-day ticket which includes admission to work-
shops, seminars and conferences. Attendees can pre-
register thru the mail or purchase tickets at the door. To
pre-register, send check payable to CP/M '83 to Northeast
Expositions, 822 Boylston Street, Chestnut Hill, MA 02167,
Telephone 617-739-2000. Call or write for the schedule of
seminars, workshops and conferences plus San Francisco
hotel information. All persons attending CP/M '83 can
obtain very low, special convention hotel rates.

For information on exhibiting or attending call or write
Northeast Expositions.

Name

Company (if any)

Address

City

State Zip

Telephone (Area Code)

Check applicable box— Make checks payable to CP/M '83. Payment must accompany ticket orders.

O Send me
O Send me
quantity

quantity

one-day exhibits-only tickets @ $10 each per day.
three-day exhibits and conference tickets @ $20 each.

O Send me seminar, conference & workshop schedule along with San Francisco hotel reservation information.

O My company may be interested in exhibiting, send me information.
Lifelines/The Software Magazine, December 1982

Feature

A Review of SUPERFILE

So you say, “Another database management program? Ho-
hum!” Well, not quite. SUPERFILE is a data base manage-
ment program into which you do not enter data. O.K., then
how does data get there, and why?

The usual concept of the data base management systems (as
currently available for microcomputers) involves setting up a
group of fields which are defined according to the particular
type of data we wish to store and manipulate: names, ad-
dresses, numbers, phone numbers, inventory numbers, etc.
These must be pre-defined and pre-located within each rec-
ord. SUPERFILE is different. Rather than letting you enter in-
formation into preselected fields for later calling up and man-
ipulation, SUPERFILE takes existing text files and makes an
index of selected keys. Then, when these keys are entered
through the keyboard, SUPERFILE will tell you, by the name
you previously assigned to the disk, which disk to put into
your disk drive. SUPERFILE then will call up the original
document and will display, on screen, printer, or write to
your disk, all or selected portions of the text. For writers or
executives who do much correspondence, it seems to be a
very good idea. And when this information can be anywhere
within 20 megabytes of hard disk storage, it seems to be a nec-
essity.

Before getting SUPERFILE, I wrote a file search program for a
commercial photographer. With thousands of photos and
thousands of subjects in thousands of different situations,
finding a particular photo for an advertising client can be a
monumental job. I limited my search to four keys and had the
entry record limited to 80 characters free style. The program
parsed each record entry for the keys logically ANDing the
search parameters. It works but is limited, takes more time,
and requires fixed 80 byte records even if the entry only needs
10. SUPEREFILE, in practice, removes these limitations, per-
mitting elaborate descriptions of the photographs where nec-
essary and brevity where it suffices.

Upon opening the package you get from FYI Inc, of Austin,
Texas, you will be pleased to discover a manual that was put
together by someone who appears to have struggled with un-
derstanding software documentation. The manual is printed
in rich blue on white stock and is complete with table of con-
tents, index and large plastic-coated tabs for ease in locating
the area you want. Sorry, Zoso, it is a loose-leaved “wedgie”
but since it is pretty full, it is relatively straight. I did not
count the pages but the contents of the manual are about two
centimeters thick - a good deal of paper, well used.

Under a 30 point heading on the instruction pages are three
main layouts used throughout the book:

1) the left page is headed COMPUTER SAYS, the left
side of the right page says YOU ENTER and the right
side of that page is COMMENTS on the particular
item being explained. Between each item is a thick
blue line to keep your attention within the proper
area,

Lifelines/The Software Magazine, Volume III, Number 7

Bob Kowitt

2) the left side shows the MENU as displayed and the
right page explains in detail the options offered,
3) explanatory text in standard page layout.

All this gives one a secure feeling when reading the manual
for the first time. The instructions are easy to read, not full of
cutesy “Whoopee” and sophomore game-talk, and also not
technical to the point of head-spinning. There is a lot of infor-
mation here and it should be read. However, you don't have
to read it all at once to see how SUPERFILE works. There is a
tutorial section to get you up and running with the demon-
stration files.

Setup is minimal. SUPERFILE does not use direct cursor ad-
dressing or enhanced video modes, if these are available on
your terminal. The installation procedure will install the clear
screen codes for seven terminals by menu. If yours is not in-
cluded, use the ‘0’ menu option and you will be able to install
your own clear screen code in decimal numbers.

If you are adding SUPERFILE to your library, you probably
have at least one disk of letters that you have written with
some word processor. In my case the word processor is Word-
Star. To make a data base of these existing letters you will
have to load each of them and make some modifications. The
beginning of each document must be marked with “*C’ and
the end with “*E’. Of course, if you modify your original text
in this manner, some means must be provided to prevent
these marks from printing. WordStar provides this ability
with the “double-dot” comment line. In WordStar, enter the
beginning and end markers with ..*C and ..*E and you're
home free. There are two more markers available, one re-
quired and the other optional. The user is allowed to select as
many keys as desired for each text entry to the data base.

SUPERFILE will find the entry using these keys. At the end of
the file, but before the final *E, start a line with *K. This
indicates the beginning of your key list. Each key must be sep-
arated with a “/” and there may be more than one line of
keys. This key may consist of one or more words, but a warn-
ing is in order. If you search using a multiple word key, the
key must be exact or SUPERFILE will not find it. The number
of keywords allowed for each data base is limited to 250
words per entry and 3000 words per data base with 64K RAM
memory. You can also have as many whole numbers (from 0
to 31999) as you wish used as keys. Therefore, some discre-
tion should be used in the selection of keys. For this reason,
the authors suggest you keep a hardcopy list of keys available
when preparing the text, to avoid plurals and similar keys.
For example, LIFELINE and LIFELINES, DATABASE and
DATA BASE, BALL POINT PEN and BALLPOINT PEN. To
avoid different types of date entries and bypass the word-key
restriction, use a different date, numbers in all cases.

Modify all texts in each category before creating your data
base, since batch processing is possible - and easier than go-
ing at it one at a time. At this point one of several decisions

must be made. If you are certain that there will be no more
(continued next page)

13

14

than 99 separate texts entered per data base, you can proceed
with creating and adding to the data base. However, while
this restriction may be no problem for large texts such as
magazine articles, it probably will not be practical for data on
hard disks or short text files. For these situations, another
technique is required.

When SUPERFILE creates a data base, it recognizes every-
thing between *C and *E as a separate entry. Therefore,
within one text file, as we recognize it, we can have many
SUPERFILE entries. Because of this, when more than 99 are
anticipated, the files should be concatenated before indexing.
The simplest means of doing this would be:

PIP newfile.txt=filel, file2, file3, file4......

If you run out of command line room, stop, let PIP run out
and then:

PIP newfile.txt =newfile.txt, file9, file10, filell,

If you are starting a new file, or adding to a text file such as a
personnel file or an inventory description file, use your text
editor and enter all the data, using *C, *K, and *E for each en-
try description. Remember, changing a text will require com-
pletely reindexing the data base, so you should probably do
this when you have several changes to make and not just one.

When your text is prepared, invoke SUPERFILE with SF and
follow the menus. You must decide on the data base file
name, the data base title (max. 64 characters), the date (for an
updating record), and up to 64 characters of commentary. If
you are using a floppy disk system, there may be many differ-
ent disks of original text material. Each disk must be given a
name. When retrieving data, SUPERFILE will tell you, by
name, which disk you must insert into the disk drive to exam-
ine the text file itself. After you enter the Raw Data filename
or filenames (you can use CP/M’s * wildcard specification),
SUPERFILE will create the data base and display the number
of keywords and entries added. The raw data filetype will
have been changed to Dnn where the nn is a number from 00
to 99. For this reason, you will need file concatenation when
working with floppy disks and you'll need it even on a hard-
disk. You cannot afford to use 2K of disk space (or 16K on a
hard disk) to store 20 lines for each employee in a personnel

file.

Before searching for an entry, check over the list of keys by
displaying the dictionary. The keys used must match those in
the index file exactly, so they must be correct. This choice
allows many options:

1) Full dictionary
2) Select Range
3) Partial Match

As usual, the manual, with its two page format, has full infor-
mation about each option.

Option 1 is self explanatory.

Option 2 allows entry of a low and high range of words for
those times when you don't know the exact key word but
can get close.

Option 3 will allow reading of keys that are “something

like” what you have in mind. With this one, you can search
for keys than contain “JO” and find JOB, JONES,
BANJO, and PANMUNJOM.

After choosing the type of search, the output options are:

1) Screen
2) Printer
3) Disk File

Should you name a disk file that already exists, there is a
warning before you overwrite the existing file. The authors
have been very considerate of us humans in helping us avoid
catastrophe.

Now that the available keys are known, it is time for a real
search. The keys are entered one at a time in response to
prompts from the system. Entering a key which is not in the
dictionary causes a “Not recognized” message with a list of
those keys that are close in the list. The word “close” takes
some understanding. This list is not necessarily those keys
that sound like or look like the incorrect one. They are close
on the list in the dictionary. SUPERFILE could use some form
of “SOUNDEX" program to find those entries that “sound
like....."”. The keys, when accepted as being in the dictionary,
will be linked with one or more logical links, AND, OR,
/NOT, supplied by the prompts. You are allowed up to 64
keys with “AND”, 32 to 64 when using “ANDandOR" and
the use of “/NOT” occupies the space of one key. This seems
sufficient for the most precise search. If the search string will
be used more than once, you can save it with an appropriate
comment applied for future clarity. You can then invoke the
same search by entering /S. You will be prompted for the file
name of the search string. A hard copy list of search strings
will be necessary for this use.

Once the data base is searched, SUPERFILE displays an out-
put menu and the number of entries found that fit the re-
quired parameters. Again, as is often the case during opera-
tion of SUPERFILE, several options are available. Either the
entire file or portions may be displayed. During the creation
of the text, another “*”” may be inserted anywhere in the text.
One of the options is display of the text between “*C"” and
“*"_If you have placed the “*" just after the address header of
a letter, for example, SUPERFILE will display all the headers
of all the letters fitting the selection criteria. One of the op-
tions is the display of only the entry headers, that is, disk
names and filenames fitting the criteria. At this time, the
search string used can be saved for future searches with the /S
command.

The manual is generous with practical uses of SUPERFILE.
They illustrate:

Records of Production Change Orders,
Vendor or Client/Customer Records
Contract Records

Tickler (reminder) File

khkkkhkhkhhkhkhkhkkhhhhhhhkhkhkhhkhhhhhhkhkhkhkhkhhhhhhkkkx

Once your data base is established, there are some additional
utilities supplied with SUPERFILE. They are Sort/Merge, File
Split, File Rename and Character Change.

Lifelines/ The Software Magazine, December 1982

If the file consists of a concatenation of many individual en-
tries, it could be useful to have the entries with each file sorted
alphabetically, by number, by date, by zip code or by any
other item you have placed at the top of the entry. Since sort-
ing is based on the first part of the text entry, planning the text
properly can allow SUPERFILE to sort by the parameter of
your choice. Remember, if you enter the sort parameter at the
top of the entry in the following way, WordStar will ignore it:

31155%
" Y

The sort is a character sort. Sort parameters must be the same
length and have the same format: 001,002...075...999. The
sort parameter may be up to 65 characters long; but while this
will be the most accurate sort, it will take more time and use
considerably more memory. Lower case can be transformed
to upper case for the sort, at the option of the operator.

The Merge facility, like the other components, contains op-
tions. After a sort/merge of files, the output can be to one
large file or split to multiple files. If you should want to sort/
merge customer files, hardware suppliers and service organi-
zations by zip code and then split them into several zip code
areas, SUPERFILE will do it with the Sort/Merge facility.

The File Rename option is not just CP/M’s REN. When text
files have been indexed, the filetype is renamed Dnn. If you
want to add to the index, just do so with the new file names.
However, before the entries themselves are altered by chang-
ing keys or concatenation with new data, the filetype should
be renamed. File Rename does this individually or by renam-
ing all the Dnn files to TXT. After alteration or concatena-
tion, reindexing replaces the Dnn filetype.

The Character Change option will allow up to 255 character
changes in a single pass. This is simpler than using your text
editor or word processor global change mechanism to make
one change at a time. In addition to alphanumeric changes (a
to A, C to V, etc.), non-printing characters can be also be
changed so that the control characters of one word processor
can be modified to those of another. These are entered as deci-
mal values.

In addition to the usefulness of the software they are offering,
the FYI folks in Austin, Texas also have joined the growing
list of enlightened and user-aware vendors who are offering a
money-back guarantee. SUPERFILE is available with a “no
risk” 30 day guarantee to allow actual testing under your own
conditions with your own text files. When you get your soft-
ware from them, you will be in for a surprise. The package
does not include a limited-use demo version for your trial,
but an actual, complete working copy. Obviously, these ven-
dorsnot only have confidence in their package but in the basic
honesty of their customers. There is some applause due them
for that. I hope other software vendors take notice.

For people who use words, SUPERFILE can be a valued addi-
tion to their software library of tools. Its free-form data stor-
age is easy to use and the output options are numerous
enough to adapt to the user’s requirements with very little
computerese necessary.

Lifelines/The Software Magazine, Volume III, Number 7

TABLE |
Facts & Figures

Package and Version:
SUPERFILE Version 1.13

Available from:
EYl. Inc;
4202 Spicewood Springs Road #204
(doesn’t that sound great!!)
Austin, Texas, 787595

Price:
$195

Operating System Requirements:
Z80 microprocessor with CP/M-80 or MP/M-80

Memory Requirements:
At least 48K RAM

Other Requirements:
Atleasttwo 8” disks or hard disk with up to 16 logical
drives. -

Available Formats:
8" IBM Single Density
IBM-PC with Baby Blue card

Auxiliary Programs Required:
A text processor or word processor for preparation
of ASCII input text.

Utility Programs provided:
A sort/merge module described above. A file split
module to. allow splitting files into two or more cate-
gories. File rename module and a global character
change module.

Portability:
Portability between systems with similar disk capa-
city should prove no problem if logical disk drive
names are the same.

User skill level required:
There should be no difficulty in setting up the sys-
tem, even for a novice. However, a great deal of
thought should be given to the manner in which keys
and file names are assigned.

Disk capacity:
If used only for key dictionary and index:
approx. 7000 entries on 8” SSSD disk
approx. 2500 5” SSSD disk
20000 on hard disk is claimed but the size of the
hard disk is not specified by FYI.

Search Speed:
About 100 items per second assuming Z80 @
4mhz., 10 keys per item.

Source language:
CONVERS, a proprietary language of FYI.

User Support:
An ‘800" assistance number

Trial Policy:
Full scale program on money-back guarantee.

(continued next page)

15

TABLE Il
Qualitative Factors

Documentation:
organized for learning
organization for reference

readability

includes all needed information

Rating *

[6) o) RE o))

Ease of use:

initial start up
setting up text files
application implementation

[e)Ne)Ne))

Error recovery:

- from input error 6
from data media damage 2

Support:

for system implementation 6

*Ratings in this table will be in a 1-7 scale where:
1 = clearly unacceptable for normal use
4 = good enough to serve for most purposes
7 = excellent, powerful, or very easy depending
on the category

BASIC/Z. ..

the ultimate CP/M’ compiler!

T JusT IWeNTED THE HALFHEIECH

FLO?FY DR\VE.-,@

Generates native code (8080/Z-80) for
fast execution - 16 bit versions soon

Sort verb is unmatched by stand-alones.
2000 elements in two seconds!

Alpha-numeric labels, variable and
function names of any length

Chain program segments which share
variables declared common

Five data types - binary/BCD/string

BCD floating point math - never a
“round-off” error - precision is program
definable from 6-18 digits

Full function program editor tests syntax
as you type

Recursive, multi-line, multi-argument
user defined functions

No royalties - No run-time charges

Dimension arrays dynamically (to an
expression) and selectively erase

Screen oriented editing of console input
at run-time (cursor left/right/start/end,
delete left/right/line, insert/change
mode, and input masking available)

Push/pop subroutine stack
Trace and single-step debugging

Multi-tiered error trapping even handles
BDOS errors

Cursor addressing, reverse and blinking
video, erase and more are supported
from source code level, with virtual
hardware independence

An extended library of over 200
“key-word” functions

For free brochure
and mini-manual:

System/z, inc.
PO. Box 11

Richton Povk IL 60471
312 481-8085

Lifelines/The Software Magazine, December 1982

* a trademark of Digital Research

MICROCACHE

MICROCACHE is not a RAM DISK.

MICROCACHE is a totally new concept which, whether you use or deal in or manufacture micro-
computers, can increase your file accessing speeds by 50,000%! It helps you out-perform yourrivals
and puts you so far ahead, you’re practically printing money!

MICROCACHE does it by monitoring and automatically storing ‘most used’ disk records in a separate
memory area for ultra high speed RAM-to-RAM transfer. (We also invented SILICON DISK -the
world’s first RAM DISK for microcomputers - to provide an additional ultra fast disk drive which is
capable of being accessed 1,000 times faster than ordinary disks).

MICROCACHE dovetails into most existing systems without difficulty. It simply loads itself into your
systems and runs in the background speeding up disk accessing forall applications. Itis easyto use,
virtually transparent and, by reducing disk activity, dramatically improves the performance, reliability
and cost effectiveness of your microcomputers.

If you want to speed up your microcomputer and your earnings, talk to us.

Microcache Technical Description

Microcache will dramatically improve the performance of
your microcomputer by reducing the number of disk
accesses to the bare minimum. Disk accessing is usually
the prime cause of slow response, even with hard disks.
Surprisingly, the vast majority of these accesses are not in
fact necessary. The overall speed increase achieved by
such a technique depends on the application and the
hardware, but is typically in the range of 2 to 50 times as
fast and can be as much as 500 times as fast for some
applications! Disk reliability, a major problem on com-
puters, is also greatly improved.

The Microcache software prevents unnecessary disk
accesses by means of a highly intelligent and automatic
buffer (cache) situated between the disk drives and the
user. Sophisticated algorithms are used to ensure that
those disk records required most often by an application
are automatically stored in this RAM ‘cache’. Consequent-
ly, on subsequent disk requests they are transferred at
ultra-high speed (RAM to RAM). The software monitors
use of the disks and ‘learns’ what to hold in the cache. In

addition to this caching, a track buffering system is
included to increase the speed of the few disk accesses
that are actually required.

You can use as small or as large a cache as you wish
(up to a maximum of 1 megabyte). The more RAM added,
the greater the speed improvement, but even small amounts
have a very significant effect. An extra 48 Kbytes is usually
adequate for single user systems. Computers with more
than 64K of RAM as standard (e.g. most 16-bit machines)
may not need any additional RAM at all. The Microcache
software runs with the existing operating system and is
transparentto the userand his programs. The only effectis
avery marked improvement in speed. Facilities are included
to enable selective locking/unlocking of disks, files and
directories if required.

Microcache is available for computers using the CP/M,
MP/M, CP/M-86, MP/M-86 or MSDOS operating systems.
The machine must, of course, be capable of accommodating
additional RAM.

MICROCACHE SYSTEM (SCHEMATIC) TYPICAL PERFORMANCE COMPARISONS MEMORY MAP
FLOPPY
DISK R
USERS
/0 0.5k [MICROCACHE
cP/M
MICROCACHE
SOFTWARE
OPERATING SYSTEM FLOPPY DISK /O +
CACHE
\/ ‘ 1r g
V USER
R— — - PROGRAM
MICROCACHE S/W
, i HARD DISK /O GHEA
v EXPANDABLE
&= FROM 8 KBYTES
————— e DURATION TO 1 MBYTE
7
WITHOUT] WITH USER CACHE
MICROCACHE | MICROCACHE RAM BANK RAM BANKS

Silicon Disk Technical Description

The Silicon Disk is a disk emulator that configures additional
RAM (up to 8 megabytes) to appear to the user to be an
extra ultra-fast disk-drive (up to 1000 times as fast as a
floppy disk!). It is accessed by the user and his programs
like any other disk drive.

Facinues include memory diagnostics, autostart routines
and the ability to alter the mapping of logical to physical
disk drives.

The Silicon Disk software will operate on most CP/M
computers capable of accommodating additional RAM.

We, at Microcosm Research, are imaginative, competitive and cost conscious. We make

products to help you become more imaginative, competitive and cost conscious.

MICROCOSM RESEARCH LIMITED
26 Danbury Street, London N1 8JU, England.
Tel: (01) 226 9092
Telex: 24263 TARDIS G.

Lifelines/The Software Magazine, Volume III, Number 7

17

Feature

8080 Assembler Programming

Bill Precht, a friend who works as a computer consultant,
once walked into a client’s office and asked what the client
was doing. The reply: “Bugging. Tomorrow I'll be debugging,
so today I must be bugging.”

So it goes.Unless you have a photographic memory, flawless
logic, and the persistence of a hungry mosquito, you will
eventually write an assembly language program that does not
work. Or if you are like me, you will always write programs
that don't work, at least the first time, and perhaps for some
considerable time. My favorite acronym for any “finished”
program I have is OLB - One Last Bug.

Do It Right In The First Place

One way to minimize debugging is to spend more time up
front, i.e. in the definition of the task you want the program
to perform and in the detailed layout of the steps necessary to
accomplish that task.

An enjoyable book on the subject of writing good programs
is Programming Proverbs, subtitled “Principles of Good Pro-
gramming with Numerous Examples to Improve Program-
ming Style and Proficiency” by Henry F. Ledgard. It is
dedicated to the art of writing error-free code, but admits that
debugging is necessary. This work defines debugging as
“...the process of finding and correcting... [programming] er-
rors”. The examples deal primarily with larger computers,
and are in PL/I and ALGOL 60. However, the messages are
clear, and much can be learned. There is also a version of Pro-
gramming Proverbs specifically for FORTRAN, and some
more recent books on programming style. I have seen books
about programming style in PASCAL, FORTRAN, BASIC,
and COBOL.

Structured Programming

Structured, or “top-down” design and programming have in-
fluenced programming style for more than a decade. In
simplistic terms, top-down design means starting with a “big
picture” definition of the task, then breaking it down into
smaller and smaller pieces, until you are at a sufficient level of
detail to do the actual programming. By breaking your pro-
blem down this finely, you make each phase (presumably)
easier to understand, and therefore easier to program.

Top-down programming refers to programming in a similar
style. I find it very useful, because it supports my preference
for programming without much design.

For example, many years ago I needed a sort program to go

18

Tutorial, Debugging

Ward Christensen

along with the mailing list for the computer club I was
treasurer of. I thought of sitting down and writing unstruc-
tured line after line of code, until what I had would do the job.
Instead, I decided to write the program top-down, designing
as | programmed.

I thought about the steps involved - to perform some in-
itialization, read the table of data (zip codes, usually), sort
them and write out the table of record numbers that detined
the file in that particular order. This easily became the plan
for the major opening lines of the program. Following the
CP/M-80 obligatory ORG 100H, I wrote the “top level” of
the program:

LXI SP,STACK

CALL INIT

CALL READ$TABLE

CALL SORT$TABLE

CALL WRITE$SORTED$FILE

CALL MSGEXIT

DB “++END OF SORT, °
NREC DB ; RECORDS SORTED$”

At the time, I was on a “long label” kick. Digital Research’s
ASM and MAC both accept labels up to 16 bytes long. So us-
ing long enough labels, you can almost comment your pro-
gram through its labels. That fad didn’t last long however,
and I now prefer labels of up to seven characters, and usually
try to comment the code explicitly.

Why program top down? Well, look at the above program
fragment. Do you think it has any bugs? I don’t think so. So,
writing top down allows you to structure the program into
sections which are more inclined to be bug free than if you
coded the entire program line after line, i.e. unstructured.

Take a look at the INIT routine:

INIT CALL GET$FLDNO
CALL SAVE$FCB
CALL OPEN$INPUT
RET

Again, most likely there are no bugs in this routine. There
could be, if the call to SAVE$FCB had been omitted, and
therefore the OPENS$INPUT routine would have wiped out
the infermation which was in the second FCB at 6CH. Struc-
tured programming is not perfect, but it does help.

Debugging Techniques

What are the most common debugging techniques?

Lifelines/ The Software Magazine, December 1982

® Programmed-in: You might assemble in some routines
that print the contents of various data fields, counters, etc.

® Debugging tools: These include DDT as supplied with
CP/M-80, or Digital Research’s symbolic debugger SID,
or others like ZSID, RAID, or DDS (the latter being an in-
teresting full screen debugger from PRS, the Program of
the Month Corporation).

As an example of the first technique, consider the way I ex-
amined some problems I was having with my disk I/O. I
wondered what calls CP/M-80 was making to such routines
as home, drive select, sector select, read, write, etc. To find
out, I programmed in a simple routine to print H when the
home routine was called, Dn when a drive was selected, Snn
when a sector was selected, Tnn for a track, and finally R for
read or W for write. This information was sent to my con-
sole, and looked something like:

D1 H T02 501 RtS0Z R

Interpreting this, I could see that drive 1 was selected, fol-
lowed by a home, select of track 02, sector 01, then a read,
etc. [was able to solve my elusive problem. DDT or SID can-
not be used to unravel a problem like this, because neither has
the ability to easily trace such events without burdening me
with significantly more data than I wanted. For example, SID
“pass points” (the addresses at which the contents of the
registers are dumped) with execution automatically resuming
would have yielded several pages, rather than several lines,
of information.

Another technique I have used is to print each label in a pro-
gram, as it is executed. For example, I start out my program
with an equate as to whether or not I want trace active:

trace equ true

Then, for each label, I code something like:

CHARLP:
if trace
call trsub
db “charlp’,0
endif

I'll make a complete program of that, showing the “trsub”
trace subroutine, and show you an example of it running:

false equ 0

true equ not false
trace equ true
org 100h
1Bat h,0 ;h1=0
dad Sp shl = CP/M stack
shld stack ;save it
ilsat sp,stack;init my own stack
mvi b,5 ;set char loop count
CHARLP:
1f trace
call trsub
db “charlp”,0
endif
der b ;decrement count
Jjnz charlp ;loop if more

Lifelines/The Software Magazine, Volume III, Number 7

fini? ;end of program
if trace
call trsub
db ‘fini”,0
endif

lhld stack ;get CP/M’s stack
sphl ;restore it
ret ;return

; trace routine prints label following
; call trsub.
; the label is binary 0 terminated.

; All registers are saved.
)

It trace

trsub xthl ;get addr, save HL
push psw ;save all
push b s regs
push d -
mov a,m ;get a char

tEpr call type ;type it
inx h ;point to next
mov a,m ;get char
ora a Qs a0l
Jjnz trpr 3 no, loop
inx h ;skip final 0
mvi a,” © ;type a space
call type ; after the label
pop d ;restore
pop b 3 the
pop psw 3 regs
xthl ;get hl,

;restore ret addr

ret
endif

; routine to type char in A.

éype push b ;ysave regs
push d
push h
mov e,a ;char to e
mvi c,wrcon ;type it
call bdos 5 via bdos
pop h ;jrestore regs
pop d
pop b
ret
’ ds 100h ;stack space
stack ds 2
H
wrcon — equ 2 ;write console char
bdos equ 5
end

Here is a sample execution of this test program, after ASMing
it and LOADing it:

A>test
charlp charlp charlp charlp charlp fini
A>
(continued next page)
19

Asyou can see, charlp was executed five times, fini once. This
technique is nice because it doesn't require any special tools,
you can print any message you like, and it can easily be
disabled by assembling the program with trace equated to
false.

The program should be pretty easy to follow, with the possi-
ble exception of my use of XTHL - it isn't one of the more
common 8080 operation codes.

XTHL swaps the 16 bits in HL with the 16 bits at the top of the
stack. This is ideal for a routine like the trace routine. The
XTHL saves HL on the top of the stack, at the same time as it
loads HL from the old top of the stack - the address of the
label message to print. The print routine then increments HL,
finally leaving it pointing past the 00 which indicates the end
of the label. This is where I want to return to, so another
XTHL restores my original HL, and puts the return address
back on the stack.

Debugging Tools

An alternative to such “planned” debugging is the use of the
CP/M-80 tools like DDT. Let's take another look at that
same program, this time with DDT tracing its execution.

When using DDT, you do not have a way to readily deter-
mine where the various routines are. You will either have to
recognize them from their approximate location in memory
and their context, or by looking at a listing file of the
assembly of your program.

Here is the DDT session tracing TEST.COM. I cut the long
trace lines in two, splitting them between “D=nnnn" and
“H=nnnn" so they would better fit the columns of this
tutorial. The trace is pretty well self-explanatory, showing
you the contents of the PSW flags (C=carry, Z=zero,
M=Minus, E=even parity, and [=interdigit carry for
decimal arithmetic), the Accumulator, BC, DE, and HL
registers, the stack pointer, the program counter, and finally
the instruction at that address.

A>ddt test.com

DDT VERS 2.2

NEXT PC

0180 0100

-a1000

1000 1xi sp, 1100
1003 call 100
1006 rst 7

1007

-Xp

P=0100 1000

-tffff

COZOMOEOIO A=00 B=0000 D=0000
H=0000 S=0100 P=1000 LXI SP,1100

COZOMOEOIO A=00 B=0000 D=0000
H=0000 S=1100 P=1003 CALL 0100

COZOMOEOIO A=00 B=0000 D=0000
H=0000 S=10FE P=0100 LXI H,0000

COZOMOEOIO A=00 B=0000 D=0000
H=0000 S=10FE P=0103 DAD SP

20

COZOMOEOIO A=00 B=0000 D=0000
H=10FE S=10FE P=0104 SHLD 0215
COZOMOEOIO A=00 B=0000 D=0000
H=10FE S=10FE P=0107 LXI SP,0215
COZOMOEOIO A=00 B=0000 D=0000
H=10FE S=0215 P=010A MVI B,05
COZOMOEOIO A=00 B=0500 D=0000
H=10FE S=0215 P=010C DCR B
COZOMOEOI1 A=00 B=0400 D=0000
H=10FE S=0215 P=010D JNZ 010C
COZOMOEOI1 A=00 B=0400 D=0000
H=10FE S=0215 P=010C DCR B
COZOMOE1I1 A=00 B=0300 D=0000
H=10FE S=0215 P=010D JNZ 010C
COZOMOE1I1 A=00 B=0300 D=0000
H=10FE S=0215 P=010C DCR B
COZOMOEOI1 A=00 B=0200 D=0000
H=10FE S=0215 P=010D JNZ 010C
COZOMOEOI1 A=00 B=0200 D=0000
H=10FE S=0215 P=010C DCR B
COZOMOEOI1 A=00 B=0100 D=0000
H=10FE S=0215 P=010D JNZ 010C
COZOMOEOI1 A=00 B=0100 D=0000
H=10FE S=0215 P=010C DCR B
COZTMOE1I1 A=00 B=0000 D=0000
H=10FE S=0215 P=010D JNZ 010C
COZIMOE1I1 A=00 B=0000 D=0000
H=10FE S=0215 P=0110 LHLD 0215
COZ1MOE1I1 A=00 B=0000 D=0000
H=10FE S=0215 P=0113 SPHL
COZ1MOE1I1 A=00 B=0000 D=0000
H=10FE S=10FE P=0114 RET
COZ1MOE1I1 A=00 B=0000 D=0000
H=10FE S=1100 P=1006 RST 07
COZ1MOE1I1 A=00 B=0000 D=0000
H=10FE S=1100 P=1006 RST 07
COZ1MOE1I1 A=00 B=0000 D=0000
H=10FE S=1100 P=1006 RST 07%*1006

-"C

Let me explain: CP/M .COM files fall into two major cat-
egories: those using all available memory which “warm boot”
when they are done, and those that don’t overlay CCP, but
rather return to it when they complete execution.

When a routine that warm boots is being debugged, no
special techniques need be considered.

However, when debugging a routine expecting to return to
CCP, neither DDT nor SID set up any particular stack or
return address for the program. So I created a “quickie”
routine to load the stack and supply a valid return address to
the program at 100. I placed the routine at 1000H where I
knew there was open memory. I loaded the stack with 1100H,
so there are slightly fewer than 256 bytes of stack between my
quickie program and the stack. I did this as follows (where “-”
is the DDT prompt character):

-a1000

10007 IxisspSii00
1003 call 100
1006 rst 7

1007

Lifelines/The Software Magazine, December 1982

(RST 7 is a general purpose return to DDT or SID.)

I then used the DDT “x” command to examine the program
counter, and set it to 1000 where my three-line routine to load
the stack and call 100 is located:

located:
—Xp
P=0100 1000

DDT typed the “P=0100 ", and I typed the 1000 and pressed
return. Now I am ready to trace the program. I decided to
trace it completely, so I used a count of “ffff”, or 65535
decimal.

You can follow the trace mainly by looking at the part that
says “P=xxxx", for that is the Program counter. Where
P=010D, you can see the instruction “JNZ 010C”. That
means 010C must be the label “charlp”. Looking at the trace,
you can see that P had a value of 10C five times, showing that
charlp was executed five times.

You can also see the count in B being decremented, as the field
“B=nnnn" goes from 0500 down to 0000. (In case it is not ob-
vious, in 0500, 05 is what is in B, and 00 is what is in C. Thus
B=0500 really means “BC=0500".)

Note how the trace ended with multiple RST 7’s. RST 7 is the
instruction used to return to DDT or SID after your program
has run, or at any time you want to stop execution but still
stay in DDT or SID. You can even code intentional RST 7 in-
structions in your assembly source, providing you only run
the program under a debugger. When the “bugs are out”,
remove the RST 7 instructions before making a normal
.COM file out of it. Placing the RST 7 instructions directly in
the ASM file saves you the problem of figuring out where to
place them when actually running DDT. For example, place
an RST 7 where your program finishes its first task. DDT will
tell you what address it was at, by typing “*” and then the ad-
dress: “*0123". You need only “g124” to continue executing,
assuming you use “x” (examine registers) and/or “d” (dump
memory) to see how things look after the beginning of the
program.

Back to the tracing: the RST 7 trace would have gone on for
thousands of lines, were it not for the fact that I pressed return
on the console. DDT is always scanning the console to see
whether you want to interrupt execution during tracing.

Breakpoints

Breakpoints furnish another way to debug a program. With
breakpoints, the program executes at full speed until a certain
address is reached, then it stops completely.

For example, I could have traced a couple of lines and then
decided to use the DDT “go” command “g,nnnn”, which ex-
ecutes full speed up to address nnnn. Assume I have set up my
three-line piece at 1000H, and am ready to debug. To orient
myself, I first list the program with the DDT “L” command.
The NOP at 115 is just “garbage” left in memory.

Lifelines/The Software Magazine, Volume III, Number 7

-1100
0100 LXI H,0000
0103 DAD &SP
0104 SHLD 0215
0107 LXI SP,0215
010A MVI B,05
010C DCR B
010D JNZ 010C
0110 LHLD 0215
0313 SPHL
0114 RET
0115 NOP

-g1000, 10c

*010C

-X

COZOMOEOIO A=00 B=0500 D=0000
H=10FE S=0215 P=010C DCR B

-g,110

¥0110

-X

COZ1MOE1I1 A=00 B=0000 D=0000
H=10FE S=0215 P=0110 LHLD 0215

*1006
The command “g1000,10c” says to go, starting at 1000h, and
breaking execution at 10c. When execution reaches 010C,
DDT echoes “*010C” to show that the breakpoint has been
reached. At that time, I issue the “x” command to see the reg-
isters, and get:

COZOMOEQIO A=00 B=0500 D=0000
H=10FE S=0215 P=010C DCR B

You can see that B now contains the 05. It is still 05, so observe
that the DCR B has not yet been executed.

I then decide to continue running until 110. I don’t have to say
“g10c,110” because DDT remembers where [was running. I
can just omit the first address and type: “g,110” to go, with a
breakpoint set at 110. DDT acknowledged getting to 110 by
responding “*0110". Again, I looked at the registers with “x”:

COZ1MOE1I1 A=00 B=0000 D=0000
H=10FE S=0215 P=0110 LHLD 0215

You can now see that B has been decremented to 0, and I am
about to restore the stack pointer by first loading it to HL
from 215H. I issue a final “g”, which then runs until the RST 7
is hit, and DDT tells me of this by typing “*1006”. I then
typed 1C to return to CP/M.

Patching

DDT and SID have simple assemblers built into them. But
working with them is not like using an editor and assembler,
because you cannot move parts of your program down to
make room for inserted instructions. However, you can
overlay existing instructions, or patch out unnecessary ones
with NOPs, (00H).

Suppose that at 10A you wanted to load B with a 6 instead of

(continued next page)

21

a 5. Just type “al05” and press return. DDT responds:
0105

leaving the cursor after the 105. Then type “mvi b,6”, and
press return. DDT prompts:

0107

so just press return, to end the assembly mode. The program
is now patched, and can be run.

If you have to insert some code, it is best to go back to the
assembler and edit in the changes. If, however, the program is
particularly large, DDT might still be the best bet.

At the area in your program where you want to make the
changes, just put a JMP or CALL to some address outside of
the program, perhaps up in high memory above CP/M, or at,
say, 8000H, if you are sure your program will not use that
area. If you JMP out, you will have to JMP back. If you
CALL out, you can RET back. For example, suppose you
have a program that under the L command of DDT looks
like:

-11253
1253 LXI H,0305
1256 MVI B,0B
1258 ADD M
1259 INX H
125A DCR B
125B JNZ 1258
125E RET

but you realize that in the routine which is supposed to add
up the 11 (OB hex) bytes starting at 0305, you forgot to zero
the accumulator before doing the first add. You can't insert
even the one-byte XRA A instruction to zero the accumu-
lator, so you will have to resort to going out to a patch area.
First, see where DDT and CP/M-80 are, by typing “15 7".
This will show the end of the area your program may use, and
specifically points to the bottom of DDT. You can use
memory under that, providing you know that your program
is not using that memory:

=15 7
0005 JMP 9700
0008

I have memory open to 9700, which may seem low, but I am
running under MicroShell (see acknowledgement at the end
of this article). I choose 8000 for my patch area. Since the LXI
H,0305 is a three-byte instruction, I can conveniently overlay
it with a call to my patch area:

-a1253
1253 call 8000
1256

Then, at 8000, I must remember to execute the overlaid in-
struction:

-a8000
8000 1xi h,305

then patch in the missing instruction:
8003 xra a
and finally, return from the patch:

8004 ret

OH-OH

Patching is very nearly a sin. Just remember to change the
source of your program to agree with what you've patched. I
have cursed myself unmercifully after fixing something with
a patch, then forgetting to change the source. I have even
gone so far as to use RESOURCE, my disassembler, to
recover heavily patched code when I've failed to update the
ASM source (or at least, when the properly modified source
has been lost).

SID

Let me re-execute the DDT trace of my test program with the
symbolic instruction debugger, my favorite. You can see how
much easier things are with it. To take full advantage of its
features, you need a symbol table for the program being de-
bugged. Digital Research’'s MAC produces the symbol table.
In a pinch, you could create one yourself, since the format is
simply an ASCII file with lines of:

nnnn label
in it, i.e. a 4-digit hex value, a space, then an ASCII label.

Let’s look at the SID run. I traced the program, and also ran it
with breakpoints. This time, the labels showed up.

SIDXREF 1D00
SYMBOLS

NEXT PC END
0180 0100 8ED8

Please excuse the strange name I have SID sign on with - that
is to remind me that I have a little memory address cross-
reference program tacked on the end of SID, so itis at 1D0O0. I
can move it down to 100, and load the program to be cross-
referenced in at 200.

I assemble my little stack-setting program at 1000:

#a1000

1000 1xi sp, 1100
1003 call 100
1006 rst 7

1007

I then set the program counter to it:

#xp
P=0100 1000

then begin the tracing of my program. Again, due to the long
lines, I stuck a carriage return between the printing of the D
and H registers. SID, instead of commenting the PSW bits,

Lifelines/The Software Magazine, December 1982

simply prints a “-” for bits that are off, or a single character
(such as C for carry) when they are on. This was done
because of the extra width of the display due to the labels be-
ing appended to the operands.

#Lff
———= A=00 B=0000 D=0000
H=0000 S=0100 P=1000 LXI
----- A=00 B=0000 D=0000
H=0000 S=1100 P=1003 CALL 0100
————— A=00 B=0000 D=0000
H=0000 S=10FE P=0100 LXI
———- A=00 B=0000 D=0000
H=0000 S=10FE P=0103 DAD SP
----- A=00 B=0000 D=0000
H=10FE S=10FE P=0104 SHLD 0215 .STACK
————— A=00 B=0000 D=0000
H=10FE S=10FE P=0107 LXI
----- A=00 B=0000 D=0000
H=10FE S=0215 P=010A MVI
CHARLP:
----- A=00 B=0500 D=0000
H=10FE S=0215 P=010C DCR B
——==1 A=00 B=0400 D=0000
H=10FE S=0215 P=010D JNZ 010C
CHARLP:
——==1 A=00 B=0400 D=0000
H=10FE S=0215 P=010C DCR B
——-EI A=00 B=0300 D=0000
H=10FE S=0215 P=010D JNZ 010C
CHARLP:
-—-EI A=00 B=0300 D=0000
H=10FE S=0215 P=010C DCR B
—==I A=00 B=0200 D=0000
H=10FE S=0215 P=010D JNZ 010C
CHARLP:
———=I1 A=00 B=0200 D=0000
H=10FE S=0215 P=010C DCR B
———-I A=00 B=0100 D=0000
H=10FE S=0215 P=010D JNZ
CHARLP:
——==I A=00 B=0100 D=0000
H=10FE S=0215 P=010C DCR B
_Z-ET A=00 B=0000 D=0000
H=10FE S=0215 P=010D JNZ
FINI:
-Z-EI A=00 B=0000 D=0000
H=10FE S=0215 P=0110 LHLD 0215
-Z-EI A=00 B=0000 D=0000
H=10FE S=0215 P=0113 SPHL
-Z-EI A=00 B=0000 D=0000
H=10FE S=10FE P=0114 RET
-Z-EI A=00 B=0000 D=0000
H=10FE S=1100 P=1006 RST 07
-Z-EI A=00 B=0000 D=0000
H=10FE S=1100 P=1006 RST 07
-Z-EI A=00 B=0000 D=0000
H=10FE S=1100 P=1006 RST 07
*1006

Again, the RST 7 was executing over and over until I pressed
return to stop it.

SP, 1100

H,0000

SP,0215 .STACK

B,05

.CHARLP

.CHARLP

.CHARLP

010C .CHARLP

010C .CHARLP

.STACK

Now, let’s re-execute the program with breakpoints. This
time I can set the breakpoints by label, rather than having to
know the address:

#g1000, .charlp

Lifelines/The Software Magazine, Volume III, Number 7

SID executes, and says when the breakpoint is reached, even
telling me the label:

*010C .CHARLP

I examine my registers:

#x
-Z-E1 A=00 B=0500 D=0000
H=10FE S=0215 P=010C DCR B

and finally go at full speed, setting a breakpoint at label FINI.

#g, .fini
#0110 .FINI

Another check of the registers:
ix

-Z-EI A=00 B=0000 D=0000
H=10FE S=0215 P=0110 LHLD 0215 .STACK

and a final “G0” to finish execution:
#8

to which SID responds
*1006

when the final RST 7 is hit at 1006. Then I use TC to get out of
the debugger.

Conclusions

I hope I have given you a little insight into some of the
popular debugging techniques, and shown you why SID is
my favorite.

Next month, I'll introduce you to MACROS - time savers for
any assembler programmer.

I would like to be overwhelmed by comments, criticisms, or
questions relating to this tutorial, 8080 programming, or
CP/M interfacing, and I'd appreciate hearing from you c/o
Lifelines/ The Software Magazine, 1651 Third Ave., New
York, N.Y. 10028.

Acknowledgement

I could not easily have illustrated this section of the tutorial
without the help of a product called MicroShell from New
Generation Systems, Inc. 2153 Golf Course Drive, Reston
VA 22091.

Of its many nice features, the one that made this article prac-
tical is “1/O Redirection”, i.e. the ability to take what would
normally come to the console and direct it to a disk file. This
feature is patterned after the Bell Labs UNIX operating sys-
tem. For example, the first DDT run began by typing “sh” to
get started under MicroShell, then typing:

ddt test.com > +foo
(continued next page)

24

“>fo0” would mean to direct console output only to a file
“f00”, so wouldn't be able to see what was going on. That
would be appropriate for “stat > foo”, where you don’t need
to see what you got. However, the “+" means also that the
output should be directed to the console. Therefore, only the
“A > ddt temp.com” had to be faked up since MicroShell only
captures the output of a single program execution, and not all

Feature

console output.

The only drawback I can see is the additional memory
MicroShell requires. But, “TANSTAAFL"” - there ain’t no
such thing as a free lunch”. Only when running a big Word-
Star edit do I really need the memory, and have to exit from

MicroShell. |

RMS, A Review

When discussing database management systems, it is easy to
talk about abstract, theoretical “models of the data”. But
although useful, the expression is somewhat misleading. Pure
applications of models of data are difficult to implement and
hard to find. T.I.M. III (see the September, 1982 issue of
Lifelines/ The Software Magazine), for instance, has some
features of a network model, but can only be used hierarchi-
cally. Condor, on the other hand, allows many relational
operations to be performed on data which is organized
around network principles. Most true database management
systems for microcomputers are mixed models. Network
principles are frequently used for organizing the data, but
hierarchical or relational principles are most frequently used
for processing it.

RMS, a database management system developed by Wash-
ington Computer Seryices (3028 Silvern Lane, Bellingham,
WA 98226) deviates from this pattern. RMS organizes data
along the lines of a hierarchical model, processes data along
the lines of a hierarchical model, and offers the user only the
options of a hierarchical model.

The Organization of the Data

RMS builds data files in a fashion unlike other databases.
Like all true database management systems, RMS supports
more than one level of related record, allowing one-to-many
relationships to be drawn within the data. It supports two
levels only, not unusual among current microcomputer
database systems. Unlike most of its competitors, however,
RMS stores both levels in a single integrated data file. Most
DBMS keep different kinds of related records in different
files, relating them to one another as necessary.

There are advantages to each approach. The major advan-
tage in maintaining separate files for each data type is the flex-
ibility it gives the user for relating files in many different
ways. It is also easier to engineer the kind of hierarchical
reversal of primary and secondary file possible in T.I.M. III.

A single, integrated data file containing both primary and
secondary records provides the advantage of easy use and
updating and makes mistakes in entering the relationship be-
tween primary and secondary files unlikely. The nature of the
relationship between differing records is more apparent to the
user.

Dayvis A. Foulger
Limitations and Applications

The structure of the data in RMS tells the whole story. The
single integrated data file which the system is built around
will be highly appropriate for a certain range of applications
and highly inappropriate for many others. The limitations
imposed by the system are simple and straightforward:

- a single primary record cannot be related to more than one
kind of secondary record;

-it is not possible to select primary records on secondary

fields;

- the problem of storage space for the data file will be en-
countered more often, and will be difficult to overcome by
appeal to additional secondary files;

- time dated secondary records (as would be kept in a general
ledger) are difficult to maintain;

These limitations grow more important as the number of pri-
mary and secondary records grows and as the complexity of
the user’s secondary record needs change. RMS can handle
some complex applications, but only at a tremendous cost in
storage space. Since each data file must contain both the
primary records and the secondary records, complex applica-
tions will almost inevitably require the [otherwise unneces-
sary] duplication of records within two or more files.

RMS is best applied in applications where a limited number
of primary records will be associated with many of a single
secondary record type. It can be stretched beyond that range
if the user is willing to do a bit of BASIC language program-
ming, but it won't stretch far.

Not An Easy Package

The root of most of RMS’ problems in this area lies in its lack
of integration. RMS has been implemented as a set of five dis-
tinct programs, each of which are run individually as needed.
This lack of integration is strange, as the programming neces-
sary to integrate the five programs into a cohesive whole
seems almost trivial compared to the difficulty of writing the
five modules that RMS does include.

Lifelines/ The Software Magazine, December 1982

TABLE 1
Facts & Figures

Package:
RMS (Record Management System)

Price:
$395 for IBM PC (also available for Z80, 6502 and
others)

Systems Available For:
IBM Personal Computer, CP/M-80

Required Supporting Software:
Operating System

Memory Requirements:
48K RAM

Diskette Capacity Required:
One Disk Drive

Utility Programs Provided:
None

Record Size & Type Limits:
Internal storage is fixed length ASCII stored using
hash coding (handle with care).

Up to fifty fixed length fields of up to 250 characters
each can be stored in up to 65,535 records per file.

User Skill Level Required:
It may take several days or weeks of trial and error
programming with RMS for a novice user to master
the system. Users who are experienced in data base
concepts may be able to master the system in a few
hours.

But even with the addition of a central program module,
RMS would not be complete. Specification of data files and
reports must be done with a separate text editor. Data files
generated by other programs can only be utilized if the user
writes a program to convert the data into RMS internal for-
mat. This last problem is a serious one, for even though the
BASIC code necessary for building such a program appears
in the final chapter of the RMS manual, there are many warn-
ings against playing with RMS data files. Those warnings are
sufficient to guarantee that most users won't make the at-
tempt.

Most potential RMS users should own some form of text
editor already, even if it is only the elementary line editor of
SB-86 (EDLIN). Using that text editor to generate specifica-
tions for RMS’ datafiles and reports should be no hardship for
users, once they figure out the format for those specifications.
Still, a more friendly system would have built-in utilities for
generating report and data file formats and there would be no
need to learn a detailed specification language.

Ultimately, these features make the RMS manual a very im-
portant component of the system. Indeed, the user’s very first
act will be to build a datafile specification using the manual as

Lifelines/The Software Magazine, Volume III, Number 7

a guide to making specifications in a text editor. Fortunately
the manual is pretty good, containing both reference and
tutorial material.

Conclusion

RMS is not this author’s conception of an ideal database
management package, but it is a very interesting package. If
you can get by its unfriendly facade, RMS emerges as a rather
unusual entity, with a pure hierarchical structure that makes
it more appropriate to some tasks than any similar system I
have encountered. I would not personally make much use of
RMS unless [was able to take the time to repackage it into a
friendlier and more complete whole. At $395, however, RMS
seems a little expensive for a program that will need major
modifications.

TABLE 2
Qualitative Factors

Rating
Documentation
organization for learning
organization for reference
readability
includes all needed information

aobh b

Ease of Use
initial start up
conversion of external data
application implementation
operator use

10 SR

Error recovery
from input error
restart from interruption
from data media damage

- b D

* Ratings in this table will be in a 1-7 scale where:
1= clearly unacceptable for normal use
4= good enough to serve for most situations
7 = excellent, powerful, or very easy depending
on the category

(continued next page)

25

TABLE 3
Data Management Capabilities

A. Underlying Data Model
1. Data Types
Alphanumeric, Numeric, Money and Date
fields.
2. Relationships
Purely hierarchical supporting one to many rela-
tionships.

B. Functions Provided
1.a. Data dictionary maintenance:
There is no central data dictionary and data is
not file independent.
b. Data reorganization and conversion:
Short files with common formats can be con-
cantenated into longer ones.

2.a. Data Entry and Editing:
The only part of the package that is really easy
to use, with good facilities for both entry and
editing of data. Speed is relatively good,
although form generation is rather inflexible
and simplistic.
b. Report Generation:

Reports are generated from a single file con-
taining both primary and secondary records.
Totals, subtotals, and group subtotals can be
computed.

3.a. Data selection by predicate:
Not Available.
b. Data Joining and Relating Multiple Data Sets:
No.
c. Calculations on Data:
Totaling can be performed in reports.

U.S. Postal Service

STATEMENT OF OWNERSHIP MANAGEMENT AND CIRCULATION
quired by 39 U.S.C. 3685)

1A.TITLE OF PUBLICATION

MONTHLY 12 2413; $50 F

1B. PUBLICATION NO. 2. DATE OF FILING
LIFELINES bj217 [oll sl 5] 20722
[3. FREQUENCY OF ISSUE 3A. NO. OF ISSUES PUBLISHED | 38. ANNUAL SUBSCRIPTION
ANNUALLY PRICE

S
3. COMPLETE MAILING ADDRESS OF KNOWN OFFICE OF PUBLICATION (Street, City, County, State and ZIF' Code) (Not printers)

1651 Third Avenue, New York, NY 10028

5. COMPLETE MAILING ADDRESS OF THE HEADQUARTERS OF GENERAL BUSINESS OFFICES OF THE PUBLISHER (Not printer)

1651 Third Avenue, New York, NY 10028
6. FULL NAMES AND COMPLETE MAILING ADDRESS OF PUBLISHER, EDITOR, AND MANAGING EDITOR (This item MUST NOT be blank)

PUBLISHER (Name and Complete Mailing Address)

Intersoft Corporation, 1651 Third Avenue, New York, NY 10028

EDITOR (Name and Complete Mailing Address)

Dr. Edward Hd. Currie, 1651 Third Avenue, Hew York, NY 10028

MANAGING EDITOR (Name and Complete Mailing Address)

Jane V. Mellin, 1651 Third Avenue, New York, NY 10028

7. OWNER (If owned by a corporation, its name and address must be. thereunder th of
owning ot holding 1 percent or moré of 1otal smount of s10ck. 1f not owned by & corporefion, the names and sddressés of the Individusl owners maist
be given. If owned by a partnership or other unincorporated firm, its name and address, as well as that of each individual must be given. If the publica-
tion is published by a nonprofit organization, its name and address must be stated.) (Item must be completed.)

FULL NAME COMPLETE MAILING ADDRESS

Intersoft Corporation 651 Third Avenue, New York, NY 10028
Oak Management Corporation Railroad Place, Westport, CT 0688
Bessemer Venture partners 30 Fifth Avenue, New York, NY 1011
Larry B. ATkoff 651 Third Avenue, New York, NY 10028
Anthony R. Gold 1651 Third Avenue, New York, NY 10028

8. KNOWN BONDHOLDERS, MORTGAGEES, AND OTHER SECURITY HOLDERS OWNING OR HOLDING 1, PERCENT OR MORE OF TOTAL
AMOUNT OF BONDS, MORTGAGES OR OTHER SECURITIES (If there are none, 5o state)

FULL NAME COMPLETE MAILING ADDRESS

©

- FOR COMPLETION BY NONPROFIT ORGANIZATIONS AUTHORIZED T0 MAIL AT SPECIAL RATES (Section 423.12 DMM only)
rpose, function, and nonprofit status of this organization and the exempt status for Federal income tax purposes (Check o

NOT CHANGED DURING

m
HAS (AS CHANGED DURING
PRECEDING 12 MONTHS

D PRECEDING 12 MONTHS change with this statement.)

(If changed, publisher must submit explanation of

""" 1 cortify that the statements made by
me above are correct and complete

10. AVERAGE NO_COPIES EACH | ACTUAL NO. COPIES OF SINGLE
EXTENT AND NATURE OF CIRCULATION 1SSUE DURING PRECEDING ISSUE PUBLISHED NEAREST TO
A. TOTAL NO. 1E!
L NO. COPIES (Net Press Run) 12.500 15.000
8. PAID CIRCULATION
1. Sales through dealers and carriers, street vendors and counter sales 1.100 1.420
2. Mail Subseription 7.980 9.303
C. TOTAL PAID CIRCULATION (Sum of 1081 and 1082) 9.080 10 72 3
D. FREE DISTRIBUTION BY MAIL, CARRIER OR OTHER MEANS
SAMPLES, COMPLIMENTARY, AND OTHER FREE COPIES 240 25
E. TOTAL DISTRIBUTION (Sum of C and D) 9. 220 10 7[‘8
s 2
F. COPIES NOT DISTRIBUTED
1. Office use, left over, unaccounted, spoiled after printing 3,133 4,252
2. Return from News Agents 47 0
G. TOTAL (Sum of E, Fl and 2—should equal net press run shown in A) 12

4.a. Data Independent Application Interface:
None.

(continued from page 7)

MOVPGM: MOV A,M
INX H
SHLD STRPTR
LHLD BUFPTR

;GET BYTE FROM STRING
;BUMP POINTER

;SAVE POINTER

;GET BUFFER POINTER

MOV M,A ;STORE BYTE IN CNSLE BFFR
CPI NULL ;END OF STRING ?

JZ EXECUT ;sEXECUTE PROGRAM

INX H ;BUMP BUFFER POINTER

SHLD BUFPTR
LHLD STRPTR

sSAVE BUFFER POINTER
;GET STRING POINTER

JMP MOVPGM ;LOOP UNTIL DONE
EXECUT: MVI A.O08H :SETUP COMMAND POINTER
STA CMDPTR ;STORE IT
MOV C,DRIVA ;INTO C REGISTER
JMP TRADDR ;EXECUTE PROGRAM
;*************************
;* *
;* MENU SCREEN DISPLAY *
. % *
; khkkkkhkhkkkhkhkhkkkkkkkhkkkkkkk
MENUSCR : DB CLRSCR,NULL, NULL, SAMPLE MENU PROGRAM~
DB BLIEE, s e T o ZSCRGLF,LF
DB LF,”1. RUN PIP.”,CR,LF,LF
DB “2. RUN STAT.”,CR,LF,LF
DB “3. RUN DUMP.”,CR,LF,LF,LF
DB “ENTER OPTION:#”,BS,”$~

PS Form
July 1982 3526

s kkkkkkhkkkkkhkkhhkrhkkhkkkkk

e :
;* EXECUTE STRING TABLE *
« %

PROG1:DB ((PROG2-2)-$) , “PIP”,NULL
PROG2:DB ((PROG3-2)-$), STAT” ,NULL

PROG3: DB ((PGMTABL-2)-$) , "DUMP STAT.COM” ,NULL
5 ckkkkkkkkkkhkhkkhkhhkhkhhkhhkhk

;* *

;* EXECUTE STRING START *

;* ADDRESS TABLE *

;* *

PGMTABL:EQU $;TABLE OF PROGRAMS

Pl: DW PROG1 ;POINTER IS MENU
P2: DW PROG2 ;OPTION

P3: DW PROG3

PTLNGTH : EQU $~PGMTABL

MAXOPT EQU PTLNGTH/2 ;HIGHEST OPTION
H s kkkkkkkkkkkhkhkkkkhkkhhhkkkkk

;* *

;* STORAGE DATA AREAS *

.k *

’

STRPTR: DW 0
BUFPTR: DW CONBUF

; END n

Lifelines/The Software Magazine, December 1982

MicroMoneymaker’s Forum
SRR RERERERERERERERERER R R
383853888888 Digital Dollars Department

Charles E. Sherman

A Cure For WordStar Addicts:
Quickey
Makes WordStar
Faster and Easier To Use

Prologue

Nearly all Lifelines/The Software
Magazine readers use word processing
programs, and many if not most of you
are called upon to recommend a “suit-
able” program or the “best” program
for others. If my statistics are correct,
at least two thirds of you use WordStar.
Ahhh, WordStar, the CP/M of word
processors! That brilliant prodigy, that
pace-setter for all who followed. It was
the first on the micro market, and it cer-
tainly delivered for us back then. It also
gave the programs which followed a
high mark to shoot at for program-
ming, power, documentation, support,
and - not last or least - good timing and
great marketing. Give that program its
gold medal and let’s retire it with a
standing ovatior.

Like CP/M, WordStar is nearly ubi-
quitous throughout the microcomputer
world. Like CP/M, WordStar bears
that distinction not because it is the
best, although it is very good, but
mostly because it was on the scene with
the right stuff at the right time. Without
meaning to denigrate the considerable
virtues, power, and capabilities of
WordStar, I do want to point out that at
least twelve major CP/M word pro-
cessing programs have been developed
in the ensuing years, and some (a few)
of them are objectively superior.

As you consider my remarks on Word-
Star and other programs, I encourage
you to practice your schizophrenia by
thinking about each point as if you

were three different people simultan-
eously:

1) yourself as user

2) a newcomer to word processing

3) a professional, choosing the “right”
program for various clients.

If you are now a satisfied user of Word-
Star, then leave the first person in the
closet ‘till last - its the hardest one to be
objective in, and it may force you to
deal with the baby duck dilemma.

Some people and their word processing
programs are very much like baby
ducks. I have recently been giving talks
on word processing, commingling and
interacting with the public on the sub-
ject. More and more the image of baby
ducklings when they first hatch keeps
coming to mind. When those cute little
fuzz-balls peck their way out of their
shells they look around and the first
thing they see, they go, “Mamal” and
that's it. They are bonded for life.
Whatever they first lay eyes on - duck,
dog, or donkey - they love it blindly
and forever.

This is the only way I can explain how
some folks are about their word pro-
cessors. Their first one, or the one they
are into using lately, is always the very
best for them, facts and realities not-
withstanding. I have talked to people
running kludge programs on dog
equipment, and they get defensive,
protective, and even insulted if I try to
suggest that theirs may not be the best
for their needs. Such loyalty is touch-
ing and admirable, but it still reminds

Lifelines/The Software Magazine, Volume III, Number 7

me of little baby ducks. So if you start
to bristle when I criticize WordStar, just
go “quack!” and you'll feel better.

It is further testament to WordStar (and
to my broadmindedness) that I don't
think more than one or two of the other
twelve programs are worth leaving
WordStar for. Not if you already have
WordStar, not if it will cost money, and
not without a specific reason. The
longer you use WordStar the more
useful and unobtrusive it becomes.
“Hard to learn, easy to use,” they say,
correctly. In spite of the fact that a few
other programs have forged. ahead in
terms of ease of use, power, speed,
more attractive print output, and so
on, that’s not reason enough for you to
increase your present level of capi-
talization. No, what worries me is that
because you are used to WordStar, and
because it is good, and because you
haven’t had much chance to investigate
the twelve others, you are too likely to
inflict the thing on innocent, gullible
newcomers. Would you give them
FORTRAN when they could be using
BASIC or Pascal?

WordStar Pros and Cons

Just to keep a sense of balance, let’s list
some of WordStar's more wonderful
features. These are things which every
word processor ought to have, but
some don't:

Decimal tabbing

Columnar block handling

Horizontal scrolling

Literal video preview

Hyphenation help

Disk buffering for files larger than

RAM

Repeating commands

Continuous scrolling

Excellent search options:
Forward or backward search,
ignore upper-lower case,
limit searching to whole-words,
(alas, you can’t use wild card
characters in your search)

(continued next page)

27

Now for the most significant shortcom-
ings. These are functions which some
of the other programs perform better:

1) WordStar is one of the most difficult
of all the CP/M word programs to
learn. Once you know it, of course,
it gets easier, but in many businesses
the people who have to run the word
processor come and go, or the need
arises to call in temporary help for
overflow work, illnesses, and so on.
Even in my own little one-man oper-
ation, I sometimes want someone
else to come in to type a big manu-
script into the computer so I can edit
it. In cases like this, WordStar is not
the best choice.

2) Even when you learn WordStar, it is
still harder to use than some of the
other programs. The command
structure is too complicated, there
are too many commands to remem-
ber, and too many keystrokes are re-
quired. It is just plain awkward.
Any user, especially people who
write a lot, should have an editor
which very quickly becomes
transparent - i.e., you forget about
the program and just do it. Nothing
should distract your .attention, or
come between you and your
thoughts on the screen. The word
processor should be like playing a
chord organ, whereas WordStar is
more like mastering the harp, where
you have to concentrate and pick
your way through it.

3) WordStar’s “include” functions are
inadequate. Being able to display an
external file to look up information
is extremely important for almost
any kind of work, as is the ability to
insert any selected portion of an ex-
ternal file into the text in RAM, at
any point indicated by the cursor.
You should also be able to call in
portions of a boilerplate file by code
number. Once you have worked
with a program that offers these
features, you will never want to do
without them. Unfortunately, all of
this is either clumsy or impossible in
WordStar. You cannot look at any
file other than the one in RAM. You
cannot include a portion of an exter-
nal file; instead, if you need material
from another file you have to load
the whole thing in, then delete un-
wanted portions. Small files can be
put in at any cursor location and
dealt with, but with larger files you

tend to load the whole thing at the
end, amputate, and block move the
selected portion to where you need
it. You can't call in coded portions of
a boilerplate file; the only way to do
this in WordStar is to make a
separate file of each segment. Clum-
sy. Messy. Imagine what the direc-
tory looks like for someone who has
to do a lot of boilerplating.

4) WordStar fails to take advantage of
terminal features, such as cursor-
keys, and special function keys.
Since most other programs use the
cursor keys, this makes using Word-
Star frustrating - you have to be
reminded with glitches and errors to
keep your fingers off the cursor
keys.

5) Mail merge functions are not includ-
ed, and to get them you have to pay
extra for MailMerge.

6) Very poor (i.e., no) protection and
recovery from disk-full error, which
may cause you to lose work, and
will certainly bog down your activi-
ty. This problem is caused by the
buffered disk operation which per-
mits you to work on long files, but
the problem can best be avoided by
not working on long files. Catch 22.
Innocent edit activities - such as
long cursor moves through a big file,
global search/replace, and especial-
ly block manipulations - can have
unexpectedly troublesome results.
To avoid problems, the user is re-
quired to constantly monitor disk
space, trying to keep twice as much
empty space as the longest file. This
is expensive for people who have
lots of long files, and bloody in-
convenient for people with limited
disk space. WordStar should (but
does not) automatically protect you
against disk-full problems, or at the
very least should give you tools to
cope, perhaps a command which
would show disk space without
leaving the edit mode.

7) More clumsiness. I hate having to
reform paragraphs, especially given
that I like to work and rework my
documents. This is the kind of
housekeeping that computers
should handle, and I shouldn’t have
to. In fact, I don’t know off hand of
any other good program that makes
you do anything like this.

8) Some users desire or require the
highest possible quality of print for
making books, reports, newsletters,
catalogues, brochures, and so on.
WordStar does not support the pro-
portional print capabilities of the
specialty printers, and it does not
support the built-in special features
of most dot-matrix printers, instead
treating them like simple teletype
devices.

It began to seem even to me that my
opinions on WordStar are so strong as
to be suspect. Maybe I'm just preju-
diced or eccentric. In an admittedly
simplistic effort to test this possibility, I
called on an acquaintance for an in-
dependent second opinion. My friend
is an electronic engineer turned
programmer who has put years in on
monster machines and high-level pro-
gramming. He recently entered the mi-
cro field, hoping to develop an in-
dependent income, and his first word
processor is, of course, WordStar. Jim
wrote: “I don't care how good Word-
Star is technically, it's human engineer-
ing is totally unacceptable! To think
that two software companies and se-
veral authors can make a living pro-
viding band-aids for MicroPro’s inept-
ness is revealing of the immaturity of
the microcomputer software market. I
would never turn this program over to
a novice.”

As you see, he reacts even more strong-
ly than I do, but his point about the
authors and publishers is well taken.
Several books are published (and ap-
parently selling quite well) showing
how to use WordStar. This indicates a
widely distributed but hard to use pro-
gram. A good word processor does not
need such support. The software com-
panies he refers to publish customiza-
tion aids for WordStar in effort to patch
its shortcomings, which brings us to the
next section of this column.

The Big Fix

For those of you who already have and
will continue to use WordStar, and for
those of you who are completely unim-
pressed by my carping, there is a wor-
thy program you should know about
which goes a long way toward making
WordStar easier to learn and use.

Here’s how it works. Take one Word-

Lifelines/The Software Magazine, December 1982

Star program, add Quickey, and,

Shazam! You now have a formidable.

word processor with single-stroke
function keys all out on the keyboard
where they belong. The innards are still
WordStar, so it still lacks the ability to
display or to conveniently include por-
tions of external files, it still won't sup-
port proportional printing, and it still
has poor protection against disk-full er-
rors. But suddenly WordStar is one
heck of a lot easier to live with, and
more productive.

Quickey, published by Raish Enter-
prises of Levittown, N.Y., is a com-
pletely customized reworking of the
“front end” of WordStar. Quickey
rewrites the command structure of
WordStar, making it more logical,
more streamlined, and more mne-
monic. Then it puts almost all com-
mands, forty-five of them, right out
there on the keyboard where you can
see them. Most commands are ac-
complished with a single keystroke. No
more groping for crib cards and
manuals. No more triple keystrokes,
and almost no double-strokes. This is
more like it! And they even send
replacement keycaps with new labels
for your keyboard. The suggested
retail price is $150.

Here’s a summary of the features:

* All cursor keys are usable, and work
in combination with (amplified by)
the home key.

* All menu prefixes are single key-
strokes. Each menu has been simpli-
fied and renamed mnemonically.

* All block operations are a single
keystroke.

* Most insert and delete functions are
a single keystroke.

* Paragraph reform, paragraph tab,
and margin release are single keys.

The keyboard layout is shown in the il-
lustration, which will give you a more
complete picture. Check it out.

An example of Quickey innovation is
found in the cursor commands. This
may be the cleverest formulation
around. Under Quickey, cursor keys
have the obvious result, moving the
cursor one step in the direction in-
dicated by the arrow. The HOME key
is a motion amplifier. Prefixing any
cursor key with HOME moves the cur-
sor as far on the screen as it can go in
that direction. HOME is also used in

other combinations for cursor motion:

HOME HOME cursor to top of file
HOME E cursor to end of file
HOME n cursor to marker "n”
HOME B cursor to beginning
of marked block
HOME / cursor to end of
marked block
HOME P cursor to previous
position
HOME S cursor to start of last

find, or to source of
last block manipu-
lated.

Word-right and word-left tabs each get
their own function key, and so do
scroll-up and scroll-down. Here again,

HOME is an amplifier.

Another small irritant is that the word-
left and word-right keys are used in
conjunction with the shift key, and are
located over the 7 and 8 keys. This
forces an uncomfortable stretch for
keys which some people use frequently.

Now for the good news. When I called
Raish to report these wrinkles I found
them to be extremely responsive, con-
cerned, and responsible. They called
back promptly and spent a transcon-
tinental hour chewing it over. Right on
the spot, Raish figured out what the
problem was and how to correct it.
Future Quickeys will have the word-
left and word-right keys relocated, and
any command which tends to get
punched in rapid sequence will be
relocated to keys which generate only
two-character codes. If you have an old
copy of Quickey, contact Raish for a
fix. Now that’s what I call good sup-
port. I get the impression that if you
have any kind of questions or problems
you'll be equally well-treated.

Forecast

In some future column, I'll do a com-
parison of the other CP/M word pro-
cessors, and try to relate features to
selection criteria. See you next month.

Lifelines/The Software Magazine, Volume III, Number 7

Something New

When you can’t find your problem,
let ACTIVE TRACE show it to you!
See inside your program as it’s
working! Just as important, see
inside your program when it’s not
quite working!

New to Basic? ACTIVE TRACE will let you
see what Basic does as it does it! ACTIVE
TRACE displays the line number, name,
and current value of the variables and
functions you choose, as they are
encountered in program flow.

Something Old

Though less exciting than harnessing the
power and speed of your computer to find
mistakes, using your computer to avoid
mistakes in the first place is equally
valuable. Cross-reference utilities have
been around for a long time. Most
programmers would not attempt to work
without them, and we don’t know why they
have not become more well known and
understood among Basic programmers and
educators. ACTIVE TRACE produces
complete cross-reference maps and
explains their use and importance.

Active Trace

If you have great intuition and are well-
disciplined, then you’ll want ACTIVE
TRACE. But if you're like the rest of us,
you need ACTIVE TRACE to:
BUnderstand and modify programs you
did not write
Mimprove your programming skills
Eminimize program development time

$125.00

complete with primer to help you use
ACTIVE TRACE to improve your
programming.

Why pay more for cross-reference utilities
alone when you can have ACTIVE TRACE,
the new easy to use programming
environment for the Microsoft family of
Basic interpreters.

SOFTNARE
SOFTNARE
DIGITAL MARKETING
DIGITAL MARKETING™

DIGITAL MARKETING CORPORATION

2670 CHERRY LANE e WALNUT CREEK @ CALIFORNIA @ 94596
(415) 938-2880 @ Telex 17-1852 (DIGMKTG WNCK)

ACTIVE TRACE is a Trademark of The Data Works.

29

Product Status

The new software products and new
versions described below are available
from their authors, computer stores,
software publishers, and distributors.
Information has been derived from ma-
terial supplied by the authors or their
agents, and Lifelines/The Software
Magazine can assume no responsibility
for its veracity. Software of interest to
our readers will be tested and reviewed
in depth at a later date.

New

Products

CREDIMAX

Syntropy, Inc.

This package manages basic credit
union accounts, processes transactions
and maintains balances. It handles up
to 32,000 member numbers, 256 share
accounts per number, amounts up to
$9,999,999,999 and as many transac-
tions per member as disk space permits.
Up to 255 payrolls are supported.

Members and their Share Accounts,
Payroll Deductions, Loans (including
Line of Credit and Partial Disburse-
ments), Payroll characteristics and Ac-
count Transactions can be reported or
modified. Deductions may apply to
loans, share accounts, or automatic
transfers. System parameters can be set
for automatic dividend generation.
Batch balancing utilities permit the
verification of transaction particulars
before posting them to account bal-
ances. Posting features update account
balances and supply period-to-date
and year-to-date information. Other
reports inform users as to Credit Union
Status overall, Delinquent Loans, In-
surance Data for CUNA reports, Bal-
ancing Totals and Posting Summary.
Federal 1099 forms can be generated.
The software is priced at $5000; a Z80,
CP/M-80 2.2, 24 by 80 CRT with cur-
sor addressing, 64K RAM, 55K TPA,
132 column printer, and hard disk
storage are needed.

30

Reports

Moneytrack

Pacific Data Systems

This money management package main-
tains transaction records for small busi-
nesses and personal accounts. It pre-
pares reports, prints checks and helps
with bank reconciliation. Reports in-
clude lists of transactions by Busi-
ness/Account, Selected Business/Ac-
count, Fund and Selected Account. In
addition, balances by Fund, Account/
Business, and Business/Account can be
reported, as can Repeating Items; an
Entry Audit report is also available.

This product includes a UCSD p-sys-
tem run time package and requires no
operating system. Up to 99 funds and
up to 900 accounts (shared by up to 99
businesses) are supported.

Moneytrack requires 64K, two 320K
disks, a 24 by 80 CRT, and a printer
supporting 80 characters per line. It
runs on the IBM PC and is priced at
$450.

Quic-N-Easi AG

Standard Microsystems

This applications database manager is
intended for the novice and requires no
programming experience. Input
screens with blanks to be filled in can be
created by the user. Data edits are set
up on a screen form. Function key pro-
grams are selected from a table and in-
dexed sequential file access is featured.

Validity checks and screen calculations
are supported. Data fields may be
added or deleted and data files are
automatically regenerated by the appli-
cations generator.

The report generator employs no pro-
cedural language, and the reports are
defined on screen by typing them the
way they will print. The report genera-
tor can resort data so that it can be
reported in any order. Up to six files
from the applications generator may be
used simultaneously by the report gen-
erator. The package costs $295.

WASH

Micro Resources

This flexible directory and CP/M-80
file utility displays the directory, checks
file sizes and disk space. In addition,
files may be renamed, copied, deleted,
viewed, printed and tagged for multi-
ple file operations.

WASH runs on CP/M 1.4 or 2.2 and
loads at 0100H of the CP/M transient
program area; it extends about 8K
bytes into the TPA. During operation
WASH displays a command menu.
The drive specified by the command
line is selected and all specified direc-
tory entries are read into a memory
resident list. This list is sorted into
alphabetical order and displayed on the
screen. Two display modes are designed
for a) clear screen/cursor addressing
equipped terminals and b) hard copy or
scroll only console devices.

The operator may select a specific file
from the file list, by moving forward
and backward through the list. A com-
mand to ZIP ahead through the list
allows rapid access to any given file.
The file list is treated as a circular buffer
so that forward or backward scanning
wraps around the list. Once a file name
is selected, the file may be:
e viewed at the console (if text)
¢ listed at the list device
e sent to the punch device
¢ renamed with only the new name
typed in by the user; normal file
name validity is checked and data
entry editing with backspace de-
lete is supported
o deleted
e copied to another drive or to an-
other user area of the same drive.
e The size of the selected file may
be displayed in number of logical
records and kilobytes.

A provision is included to selectively
tag files from the file list; the tagged
files may then work with copy or delete
commands which allow all tagged files
to be operated on. The Tagged Copy
command copies files to another disk
or to another user area of the same
disk; the Tagged Delete command in-
cludes a file by file prompting option
for confirming each delete.

Other commands permit the operator
to determine space remaining on an-
other drive, or restart WASH opera-
tion on another drive or user area of the
same drive. Some commands are avail-
able only to CP/M 2.2 users. The
COPY and RESTART/LOG com-
mands under CP/M 2.2 can be set to
allow file copying and restart across
user boundaries when accessing an-
other disk drive.

Lifelines/The Software Magazine, December 1982

The WASH 3.2 installation package
permits tailoring of the console inter-
face. Any legal drive may be chosen as
the file list source.

The product is implemented in 8080
assembly language and no assumptions
are made about the maximum number
of directory files, other than available
memory space for the list. Directory
and disk I/0O is handled through BDOS
calls, guaranteeing compatibility with
all system implementations. WASH is
priced at $49.95, plus tax.

New

Versions

Please see pages 35 and 36 for reports
new versions of CP/M-80 and dBASE
II. muMATH/muSIMP, from Micro-
soft, Inc., is now available in a version
for the IBM PC.

Pascal/Z and Pascal B/Z

Version 4.1
New features include:
® 15% faster runtime
® an INCLUDE statement generated
in the .SRC file to include correct
MAIN, EMAIN, XMAIN or XE-
MAIN during assembly
® error messages are generated if IN-
CLUDE file is empty or not found,
or if READLN and WRITELN of
non-text files is disallowed
¢ the total number of compilation er-
rors is reported in the .LST file and
on the console
® a compiler option initializes (if
enabled) local variables of a pro-
cedure or function to zero when the
procedure or function is entered
e sixty overlay modules are now per-
mitted and the user may specify an
overlay starting address
® OVLGEN works under XSUB and
OVLGEN-generated modules are
Microsoft-compatible
® range checking is performed on
pointers with R option enabled
e division of a constant by zero is
detected at compile time
® a TAB is not treated as a string ter-
minator when reading from console

e if REALs are entered incorrectly
from the console the user will be re-

prompted and a fatal error will no
longer occur

® RESET or REWRITE on a file name
returns an error message

® Pascal/Z is MP/M compatible

e LINK/Z can be made compatible
with Microsoft linkers past version
3.36

® a new version of PASOPT opti-
mizer is included

® run-time error messages are listed in
the manual

Library modules and source files, as
well as one file of the fixed point pack-
age, have been modified.

If the assembler is given “y” as the
listing drive, it will output the listing
file to the printer, as does the compiler.

Users should remember to reassemble
and relink any external routines, since
the assembler and linker now accept up
to eight significant characters. Ithaca
Intersystems has also mentioned that
the example MOD—STRING on p. 83
of the manual requires two more global
types to work properly:
TYPE $STRINGO = STRING 0;
$STRING255 = STRING 255;

Pascal B/Z is a business programmer’s
version of the Pascal/Z compiler; the
floating point routines are replaced by
BCD (binary coded decimal) fixed point
routines, to allow greater precision and
accuracy. Up to thirty digits of preci-
sion are supported, under user control.
Fixed point numbers of different sizes
can be mixed within the same program.

Priorities

Version 1.1

This time management system has been
updated to include more printing op-
tions and to increase speed. Overdue
prioritized tasks are now reprinted on
successive daily reports — as a reminder
to the user. A new Multi-Day report
permits reporting through setting of
several values: start date, end date,
search string and column format.

Books

Reviewed by Steve Patchen

Problem Solving Principles For ADA
Programmers: Applied Logic, Psychol-
ogy and Grit

Lifelines/The Software Magazine, Volume III, Number 7

= E—

by William E. Lewis

Hayden Publishing Co., Rochelle Park,
N.J., 1982

$9.95

This book approaches programming as
a problem-solving technique. Three
aspects of problem-solving are dis-
cussed: general, program-related and
the influence of psychology on the pro-
cess. Most examples are in ADA, but
knowledge of ADA is not essential to
understanding the terminology and
techniques discussed. Different ver-
sions of the book show examples in
BASIC, in PASCAL, in FORTRAN
and in INTERLINGUA.

The first section of the book introduces
problem-solving and thinking tools as
concepts. Twenty-two general prob-
lem-solving principles called prescrip-
tions are covered. Then the application
of top-down development is related to
the problem-solving process. The last
section of the book applies sixteen
related problem-solving prescriptions
for program debugging. Each prescrip-
tion isillustrated by both computer and
non-computer examples.

Most prescriptions have catchy titles
like: ‘Make Sure There is Method to
Your Madness’,'He Who Digs a Pit Will
Fall into It and ‘Zeal Without Knowl-
edge Is the Sister of Folly’. The prob-
lem-solving process is diagrammed as
four steps: of problem definition, solu-
tion planning, coding and debugging.
The author emphasizes that concen-
trating on proper analysis in the first
two steps reduces the amount of time
spent in backtracking, makes the re-
maining backtracking easier and gives
assurance that the problem can be
solved. The problem structure is
related to the concept of input, process-
ing, output. Thus, a problem has a set
of facts given, operations and a goal to
be achieved. The thinking tools are
used to work forward and backward
along this path between the given facts
and the goal and to leap hurdles en-
countered along the way. The prescrip-
tions introduce either principles of pro-
cedural logic or psychological princi-
ples dealing with the mind and creative
process.

The second chapter introduces the first
prescription, ‘Make Sure There is
Method to Your Madness'. It instructs
the reader to be sure that the problem is
defined completely before trying a so-
lution. Once the definition is clear, the
problem relationships can be determin-
ed and a solution planned. The discus-

(continued next page)

31

sion of this principle is completed by a
non-computer example and two com-
puter examples. Most of the other pre-
scriptions are presented in a similar
manner.

Typical chapters which cover psycho-
logical principles recommend that you
‘Incubate When Gears Get Stuck’ or
that you avoid adding additional stress
to the process by insisting upon a solu-

tion as soon as possible. The author
also discusses what he calls the ‘game
effect’. Pleasure in problem-solving can
spark interest in the problem and pro-
vide motivation towards a solution.
However, enjoyment of the game can
also interfere with the technical han-
dling of the problem.

The debugging section treats bugs as
problems to be solved. After describing

the relationships between symptoms
and bugs, another set of prescriptions is
presented for the solution of this type
of problem. The book concludes with a
bibliography of related works on prob-
lem-solving, logic and psychology.

I found this book to be easy, enlighten-
ing reading, useful to both experienced
programmers and beginners.

CP/M Users Group

CPMUG News
Ward Christensen

Online Communications
Between CP/M Users:
Announcing CBBS/CPMUG, (312) 849-1132

CBBS/CPMUG (C/C for short) is a
Computerized Bulletin Board System I
have put up to supply online communi-
cations among people interested in
CPMUG. It is available 24 hours a day,
seven days a week. It is a single user
system, so please be considerate about
the amount of time you spend.

Calling CBBS/CPMUG

Use any standard 103-type modem:
110, 300, 340, or 600 baud. The system
is using a PMMI. Press return several
times for CBBS to detect your speed. Be
sure auto-linefeed is set off, or I'll never
see two consecutive carriage returns.

Overview of CBBS

CBBS was created by Randy Suess and
myself in January 1978. We put up the
first one (still online at 312-545-8086) in
February ‘78. CBBS gets its name from
the fact that it is patterned after the
“cork board and push pin” bulletin
board often found at computer club
meetings, where people post 3x5 cards
with notes to each other. On CBBS, the
“cards” are messages - each assigned a
number and each having a heading
with pertinent data. An example:

00001 80 10/03/82 W.CHRISTENSEN ALL

Subj:CPMUG HISTORY

This means “Message 1 is 80 lines on

32

10/03/82 from me, about CPMUG his-
tory”. The S (Summary) command
supplies this information. There is also
a Q command for Quick summary. The
command will stop when it runs out of
messages, or may be suspended (to stop
it scrolling off your screen) by typing
control-S or just S. Restart with an-
other S or with Q. To abort the sum-
mary and return to the main menu, hit
control-K or just K.

Here is a quick summary of the low
numbered messages. It was obtained
by typing Q at the main function
prompt then when asked for the start-
ing message number, replying 1. Since
answers to CBBS questions may be
“stacked” using “;” as a delimiter, the
command could have been typed: q;1

00001 CPMUG HISTORY

00002 CBBS/CPMUG PURPOSE

00003 CBBS/CPMUG FILE TRANSFERS
00004 MODEM DOCUMENTATION
00005 MODEM PROTOCOL (CONTD)
00006 CPMUG CONTRIBUTION FORM
00009 CBBS HARDWARE/SOFTWARE REQMT
00010 CBBS SOFTWARE FOR SALE
00011 CBBS ORDER/ T & C FORM
00012 USER PROFILES

00060 V60 6502 Z-80 UTIL

Message numbers 60-nn will contain
the CPMUG catalog files from the re-
spective volumes. If there are requests,
I'll put older catalogs on, too.

Commands

Most CBBS commands are single let-
ters, entered at the main function
menu. The major functions supported
are:

(S)ummarize msgs

(Q)uick summary

(R)etrieve msg

(E)nter message

(H)ELP

(G)ood bye

More minor functions are:
Print caller # etc
(A)lter Baud rate
(B)ulletin reprint
(C)ase upper/lower
(D)uplex: echo off
(K)ill message
(N)ulls: How many?
(P)rompt bell off
(T)ime/date print
(V)ideo backspace
(W)elcome reprint
E(X)pert user mode

Additional commands are:

CHAT See if operator is available to
talk via keyboard

CONT Continue previous message
(use E for first part)

HELP New user help; (H keyword
based help)

MINE Find my messages

NEWS What's new on CBBS

SHORT Shorten output

You can obtain details on any com-
mand with the H command, which ac-
cesses a large file of many keywords.
All commands execute by typing the
command and pressing return. If you
then type a command, you will get help
for it.

Lifelines/The Software Magazine, December 1982

File Transfer

I am deeply concerned that unrestricted
file transfers would tie up the system ,
making it less available for message
traffic. For the time being, I am making
an area available for public use, under
the password CPMUG. You have to ex-
ecute the otherwise-undocumented M
command to get into the modem sub-
menu mode. From there it supports five
single-letter commands: D Directory
list; M go to Main menu; R Receive file
from you; S Send file to you; and T
Typefile. A “?” command prints the list
of available commands. STAT is also
available, and prints the amount of
space available on the disk.

Among the files I have placed on it is
Q.ASM, the ASM file I couldn't print
in my 8080 programming tutorial a
couple months back (you had to type in
and load Q.HEX, which was a pain).

The modem protocol supported is from
my original modem program from 6,
25, 40, 47, and more recent volumes.

The CRC protocol implemented in
later versions is not supported. Docu-
mentation on the protocol is contained
online, in messages 4 and 5.

The areas I foresee file transfer being

used for are:

e Sending contributions

® Retrieving contributions for review

© Modemming in bug fixes for previous
releases

I also send articles to Lifelines/The
Software Magazine once a month, so if
you want to modem something in, I
can get it to them. (You'll get any $$ due
you - or you can let me put it toward
supporting CBBS/CPMUG whose [not
insignificant] expense I have personally
taken on.)

If you plan to contribute by modem-
ming to CBBS/CPMUG, include a
CPMUG contribution form (on most
recent CPMUG disks, available as mes-
sage 6 on C/C, or may be modemmed
from C/C). U-G-FORM.LIB is the full
form with comments and U-G-FORM.-
BREF is the brief form with all instruc-
tions deleted.

Purpose Of CBBS/CPMUG

CPMUG lacks anyone for users to
“talk” to. It is not appropriate to

employ someone just to talk to people
with questions about CPMUG, as the
volumes could not be maintained at
their current low price.

A CBBS can be a vehicle for many peo-
ple. Unlike telephone communication,
where only two parties benefit, a CBBS
allows anyone to “look over the shoul-
der” at what is going on, and partici-
pate if they feel like it. The kinds of sub-
jects already on CBBS/ CPMUG as of
the end of October are:

00500 ERROR IN CPMUG V.78

00503 PROFILE: JIM WILLING

00513 STOIC CP/MUG #23

00522 DIR LOCATION

00531 CP/ & ATARI 400

00532 CPMUG OBJECT LIBRARY

00538 OBJLIB & CPM3

00546 STOIC HELP

00576 CONTRIB: BILL DAVIDSEN

00580 STARTING AN RCPM/ CPMUG 91+
00586 HELP CPMUG: WRITETO MAGAZINES

500 is a bug report; 513 a request for
help on STOIC; 503 a profile of CP/M
users; 522 a request for information
about location of directory on CP/M
disks; 531 a request for info on hooking
an Atari to a CP/M machine as an in-
telligent graphics peripheral; 532, 3,
and 8: comments on the CPMUG ob-
ject library; 546 help for the STOIC
question; 576 a list of contributions
from Bill Davidsen; 580 information on
upcoming releases; 586 a request to ar-
range with magazines to contribute
software they publish.

These are just samples. The shape of

C/C will be determined by its users. I

see the primary goals as “communica-

tions among people with like interests”,

but more specifically, messages about:

e contributing software;

e reviewing software;

e bug reports/fixes;

e asking if a certain kind of program
exists;

¢ “Conferences”: many people leaving
messages on a single subject;

Example: discussion of “CPMUG OB-
JECT LIBRARY” - a library of source
and object routines which, using Digi-
tal Research’s RMAC, will simplify
writing assembly programs for the
8080.

I plan to put a record of each CPMUG
contribution in a message, so all can see
what is coming. Contributors can check
the progress, report bugs, etc. You

Lifelines/The Software Magazine, Volume III, Number 7

can participate in the cataloging of
CPMUG volumes by helping decide
which contributions would nicely go
together to make a volume.

C/Cis also an excellent vehicle for con-
tacting me about anything - 8080 pro-
gramming tutorial, editor reviews,
CPMUG contributions, etc.

I welcome your calls and ideas. If you
have comments for me not of general
interest to all callers, leave them when
you issue the G command to say
(G)ood bye, leaving messages open for
more general communications.

Ordering From CPMUG

Many of you have inquired about
ordering volumes from The CP/M
Users Group (CPMUG).

The complete catalog of volumes is
available for $10, prepaid, tothe U.S.,
Canada and Mexico. The price is $15
for catalogs sent to all other countries.

Software is obtainable exclusively on
diskette; CPMUG does not supply
printed documentation.

Software is available in 8” IBM,
NorthStar 5%4”, and APPLE 16 sector
formats.

Payment covers the cost of material,
packaging, and postage (which is ex-
orbitant). Checks must be in U.S.
dollars, drawn on a U.S. bank.

CPMUG receives orders by mail only;
they have NO phone service (contrary
to misinformation supplied occasion-
ally by other publications such as
BYTE).

Orders should be sent, with prepay-
ment, to CPMUG, 1651 Third Ave.,
New York, N.Y. 10028.

CPMUG Library
Available For APPLE

In response to your demands,
CPMUG has now made its library of
90 volumes of public domain software
available to users of APPLE, 16 sector
diskettes. |

33

WHAT HAPPENED
TO IT?211!

NO PROBLEM. WE'VE BEEN

USING BACKREST. WE'LL

JUST RESTORE IT.

BACKREST INTELLIGENTLY

BACKS UP ANY HARD DISK TO
FLOPPY DISKS AND ALLOWS

SIMPLE RESTORATION LATEV

PROF. EASY —
WE LOST THE

IT ONLY BACKS UP FILES
THAT WERE CHANGED.

IT PRODUCES A REPORT
SHOWING WHAT IT HAS
DONE, EVEN STATISTICS
ON HARD DISK USAGE
AND BAD FILES!

BUT WHAT IF A
FILE IS TOO BIG
FOR A FLOPPY

DOESN'T IT USE
A LOT OF
FLOPPY DISKS?

Stok Software Inc.
17 West 17th Street
New York, N.Y. 10011
(212) 243-1444

BACKREST WILL
SPLIT IT BETWEEN
CODED FLOPPY DISKS.

Complete 8 inch CP/M format disk
and manual retails for $99.95. N.Y.
residents please add sales tax.

THIS IS GREAT!
MY DATA IS SAFE, AND
| DIDN'T HAVE TO SPEND
THOUSANDS BUYING A
TAPE BACKUP DEVICE.

Toll free order line: (800) 431-1953 ext 183
In NY (800) 942-1935 ext 183

=

Dealer inquiries invited.
CP/M is TM of Digital Research

Once More with Feeling: CP/M Version 3

Introduction

Once upon a time, when people spent hours tuning the vol-
ume and treble controls of their cassette recorders so that
BASIC would load, when grown men had knobs on their fin-
gertips from flipping front panel switches, and when software
came punched on paper tape, I saw an article in Dr. Dobbs
Journal titled “First word on a floppy-disk operating system”.
The subtitle was “Command language and facilities similar to
DECSYSTEM-10". The price was (tentatively) $50 for the
documentation, and $20 for the software. Some months later,
after a to-the-death struggle with my Tarbell disk controller, I
saw ‘A >’ for the first time.

Then came version 2.2, and not only did all the filenames stay

34

Michael Olfe

on the screen when you typed “DIR”, but you could actually
put more than 241K on an 8” disk! They’d gone about as for
as they could go, one thought.

Then all sorts of wonders befell us. Hard disks, 16-bit CPUs,
memory management, multi-tasking, multi-users, parallel
processing, etc. The software started to look nice, too. When
IBM stopped laughing at microcomputers and began to sell
them, it was clear that the world would never be the same.

So here is CP/M again, version 3. I'm a little sad that I can’t
feel the same excitement about this event that I did about see-
ing that first “A>", but it’s not just because I'm older and
wiser. There are plenty of other significant events around to
compete for one’s attention.

Lifelines/The Software Magazine, December 1982

Description

The changes made to version 3 are neither unexpected nor
original - some of them have been available for some time in
various CP/M 2.2 implementations and utilities. But they are
nonetheless very welcome and do remove some serious limi-
tations of CP/M 2.2. My remarks here are based upon a pre-
release of version 3, so there may be some features which will
be changed or unavailable in the release version.

Features of version 3:

BDOS

CP/M 2.2 compatibility. (See below)

32M/file and 512M/drive maximum size.

Time and date stamping,password protection.

Multiple sector read/write.

System control block containing information about con-
sole width, printer list toggles, printer width, time and
date accessible to applications programs.

Direct BIOS calls supported through a BDOS call.

BDOS disk free function call.

Blocking and deblocking in the BDOS.

Physical Disk error flags returned to applications pro-
gram.

Automatic log-in of changed disks.

CEP
Multiple commands per line.
Search path for COM files.
Console I/0 redirection.
Resident System Extensions - Programs which load and
stay in memory as extensions of the operating system.

Comparisons to CP/M 2.2

COMPATIBILITY

There are some minor restrictions to CP/M 2.2 compatibility.
The IOBYTE is, according to the preliminary documenta-
tion, going to be dropped, making function calls 7 and 8 up
for grabs. IOBYTE has been replaced with a more flexible
redirection method, however, by which you can assign any of
five logical devices to any combination of twelve physical
devices. Function call 27, “Get Allocation Vector”, will not be
supported. TPA size on computers without bank-switched
memory will be reduced by 3-4 K.

SYSTEM GENERATION

To bring up version 3, you first modify your CP/M 2.2
BIOS. There are one or two code modifications, and an addi-
tion of several pages of code. The modifications are not ex-
tensive and not all need be done to boot the system. System
generation for version 3 is slightly complicated by the fact
that all the code is relocatable. If you have written relocatable
code before, this is no problem. If not, you may have to
change some expressions in your CP/M 2.2 BIOS ASM file
listings to avoid expression errors from RMAC.

Lifelines/The Software Magazine, Volume III, Number 7

CP/M 2.2 CP/M 3.0
Write BIOS, assemble Wrrite BIOS, assemble
Link BIOS, BDOS
Run GENCPM
Write Cold Start Loader, Write LDRBIOS, assemble
assemble :
Wirite BIOS,CSL,CP/M to Link LDRBIOS,CPMLDR
System tracks Wirite Cold Start loader,
assemble
Wrrite Cold Start Loader,
CPMLDR, CCP to system
tracks.
SYSTEM RELOCATION
This is where version 3 is a joy.
CP/M 2.2 CP/M3
Re-Assemble BIOS run GENCPM
Re-Assemble BOOT
run MOVCPM
save 43 NEWCPM.COM
DDT NEWCPM.COM
(overlay CSL and BIOS)
SYSGEN

GENCPM prompts you for all the information it needs to
relocate CPM3.SYS (the file where the BDOS and BIOS
resides) for a banked or a non-banked system, then writes a
relocated CPM3.SYS.

BOOT PROCEDURE 0
The “v” in the diagram means “the module above loads and
jumps to the module below”

CP/M 2.2 CP/M 3
Boot ROM Boot ROM
v v
Cold Start Loader Cold Start Loader
v v
BIOS CPMLDR
v v
BBDOS;CCP CPM3.SYS
(BDOS, BIOS)
v
CEPR

CP/M 2.2 (in most implementations) expects all the com-
ponents of itself to be resident on the system tracks. In ver-
sion 3, CPM3.SYS is always in a file, CCP and CPMLDR
may be either in files or on the system tracks. This allows the
two portions of the system which tend to grow in size (BIOS
and CCP) to do so freely, and may allow a reduction in the
number of system tracks,

If CPMLDR is linked to run at address 100h, it may be run
under CP/M 2.2 to boot version 3.

In systems with bank switched memory, a copy of the CCP
can be kept in memory and copied down to its load address
(100h in version 3) on a warm boot, avoiding the necessity of
disk access.

Next month: Bringing up a version 3 CP/M.

35

ew

Version number 2.35 applies to both the full system (“DBASE.
COM”) and the run-time package (“DBCODE.COM”,
“DBRUN.COM", “DBRUNOVR.COM"). This version no
longer runs under CP/M 1.4.

The run-time package is intended for developers of applica-
tions. The application is developed and debugged with the
full system. The “CMD" file is then renamed to a “SRC" ex-
tension, and “DBCODE" is run on it. A smaller “CMD" file is
generated, containing only control character tokens, and can
be run with “DBRUN.COM”. Only “DBRUN.COM (20K)”,
“DBRUNOVR.COM (40K)”, “DBASEMSG.TXT (12K)”,
and optionally “INSTALL.COM (12K)” need be present on
the applications disk, in addition to the final “CMD" file and
any files used by it. For the first time, there is documentation

_on the file structure of the database included.

36

The full system is organized differently than the previous
version, and contains only three files (“DBASE.COM”,
“DBASEOVR.COM”, “DBASEMSG.TXT"). All the overlay
“OVR" files have been gathered into “DBASEOVR.COM”,
which is 40K long. All messages, including the command
descriptions called up with the new “HELP” command, are
contained in “DBASEMSG.TXT”, an ASCII file which can be
edited and lengthened.

There are some new commands:

HELP <command > Displays description of <command>
syntax and usage.

TEXT... ENDTEXT Displays the text between TEXT and
ENDTEXT

REINDEX Reindexes the database in use to the same index
files with which it was opened

LOAD < filename> Loads an INTEL HEX file into memory

Listed below are some of the more than 35 changes (i.e., bug
fixes) and 26 enhancements documented for this version:

Changes-Bug fixes

1. Fixed EOF function after PACK of empty index file

2. Fixed INSERT when no data was entered

3. RENAME discards all knowledge of old name after suc-
cessful rename

4. Fixed problem with LOOP jumping to wrong ENDDO

5. SET LINKAGE ON works with mixture of indexed and
non- indexed databases

6. APPEND to empty database shows no garbage with SET
CARRY ON

Enhancements

1. EDIT, APPEND, CREATE, INSERT can use format files
to format screen with SET FORMAT TO < file>

2. RESTORE can load saved memory variables without

ersions &
Michael Olfe

releasing current memory values by means of ADDITIVE
phrase e.g. RESTORE FROM MEMFILE ADDITIVE

3. RELEASE and SAVE can act on subsets of memory
variables. e.g. RELEASE ALL LIKE MEM* :

4. DISPLAY STATUS shows USE database file names, in-
dexes, and their key expressions as well as the status of all
SETs

5. Relative screen addressing is implemented e.g. @ $+1,
$+2 SAY “hello”

6. SET DELETE ON causes FIND not to find records marked
for deletion.

Compatibility

1. "MEM" files created under previous versions must be re-
created in order to be used with this version.

2. "DBASE.COM" in the full system is 1/4 K larger than the
2.31 version. This may prevent some applications from
running if they need that extra 256 bytes for a “SORT".

3. This version will not run under CP/M 1.4.

The remarks below are based upon a beta-test version, and
may not be true of the final 2.35 release version.

Bugs/Oddities

1. Despite a statement in the accompanying documentation
that “DO CASE"” statements now nest, I found that they
did not.

2. Several conditions can cause “DBCODE" to overlook the
end of file, and try to generate an infinitely large “CMD"”
file:

a. High-bit characters in the “SRC” file.

b. No CRLF after the last statement in the “SRC” file.

c. A “TEXT....ENDTEXT"” block of more than about 128
characters.

3. A truly odd side effect in using “Select” with “Replace”. In
the loop below, the “Replace”s will not take effect, even
though they are reported if “TALK” is on.

use db1

select secondary

use db2 index db2

do while .not. eof
Store P.ONE to S
Select secondary
find &s
if #40

replace P.two with S.two

endif
select primary
skip

enddo

The fix is simple, even if illogical. Select the primary database
just before the “Replace”. For some reason, this works! |fj

Lifelines/ The Software Magazine, December 1982

BOY IS THIS

COSIING YOU.

[t's really quite basic: time is
money.

And BASIC takes a lot more
time and costs a lot more
money than it should every
time you write a new business
software package.

Especially when you
could speed things up with
dBASE II.

dBASE II is a complete:
applications
development package.

Users tell us they've cut the amount of code they
write by up to 80% with dBASE II.

Because dBASE II is the high performance relational
database management system for micros.

Database and file handling operations are done
automatically, so you don’t get involved with sets, lists,
pointers, or even opening and closing of files.

Instead, you write your code in concepts.

And solve your customers’ problems faster and for
a lot less than with BASIC (or FORTRAN, COBOL
or PL/I).

dBASE II uses English-like commands.

dBASE II uses a structured language to put you in
full control of your data handling operations.

[t has screen handling facilities for setting up input
and output forms.

It has a built-in query facility, including multi-
key and sub-field searches, so you can DISPLAY
some or all of the data for any conditions you want
to apply.

You can UPDATE, MODIFY and REPLACE entire
databases or individual characters.

CREATE new databases in minutes, or JOIN data-
bases that already exist.

APPEND new data almost instantly, whether the
file has 10 records or tens of thousands.

SORT the data on as many keys as you want. Or
INDEX it instead, then FIND whatever you're looking
for in seconds, even using floppies.

Organize months worth of data in minutes with the
built-in REPORT. Or control every row and column
on your CRT and your printer, to format input and
output exactly the way you want it.

You can do automatic calculations on fields,

Also available from Lifeboat Associates.

records and entire databases
with a few keystrokes, with
accuracy to 10 places.

Change your data or your
entire database structure
without re-entering all
your data.

And after you're finished,
you can protect all that
elegant code with our run-
time compiler.

g

ot

Expand your clientbase
with dBASE II.

With dBASE II, you'll write programs a lot
faster and a lot more efficiently. You'll be able to
write more programs for more clients. Even take
on the smaller jobs that were out of the economic
question before. Those nice little foot-in-the-data-
base assignments that grow into bigger and better
bottom lines.

Your competitors know of this offer.

The price of dBASE II is $700 but you can try it
free for 30 days.

Call for our Dealer Plan and OEM run-time package
prices, then take us up on our money-back guarantee.
Send us your check and we'll send you a copy of
dBASE II that you can exercise on your CP/M®
system any way you want for 30 days.

Then send dBASE II back and we'll return all of your
money, no questions asked.

During that 30 days, you can find out exactly how
much dBASE II can save you,
and how much more it lets
you do.

But it’s only fair to warn
you: business programmers
don’t go back to BASIC's.

Ashton-Tate, 9929 Jefferson,
Los Angeles, CA 90230.
(213) 204-5570.

Ashton-late

©Ashton-Tate 1981

®CP/M is a registered trademark of Digital Research.

LIFELINES /T Software Magazine” : "

1651 Third Avenue, New York, New York 10028

